Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стеклопластики — Свойства

Отмечалось, что основным препятствием для широкого использования систем трубопроводов из армированных пластиков является система их соединения [7]. Та или иная система соединения труб обладает определенными преимуш ествами. В табл. 6 рассмотрены некоторые методы соединений труб из стеклопластиков и свойства соединений.  [c.332]

Неориентированные стекловолокниты содержат хаотично расположенные в плоскости (реже в пространстве) дискретные, короткие волокна. Для таких стеклопластиков характерна большая, чем у ориентированных стеклопластиков, изотропия свойств. В то же время прочность и жесткость неориентированных стеклопластиков меньше прочности и жесткости ориентированных стеклопластиков (рис. 10.21).  [c.287]


Химическая стойкость стеклопластиков определяется свойствами связующего [36].  [c.146]

Характерной особенностью процесса разрезки стеклопластиков абразивными кругами является их интенсивное изнащивание, которое заключается как в выпадении отдельных зерен из-за интенсивного истирания связки, так и в изнашивании самих зерен из-за сильного абразивного воздействия наполнителя обрабатываемого материала. Кроме того, круг весьма интенсивно засаливается связующим и продуктами деструкции полимера. Интенсивность засаливания падает при обильном охлаждении обычной водой. Ранее отмечалось (см. п. 3.3), что стеклопластики обладают свойством водопоглощения, что приводит к изменению их характеристик. Поэтому использование охлаждения в ряде случаев недопустимо, что существенно ограничивает область применения для разрезки абразивных кругов. В то же время опыт использования для разрезки стеклопластиков алмазных отрезных кругов [1, 62, 79, 101 и др.] показывает, что применение алмазного инструмента по сравнению с абразивным дает увеличение скорости, а следовательно, и производительности в 1,5—3 раза и стойкости в десятки раз при улучшении качества обработки. Кроме того, алмазные отрезные круги позволяют производить разрезку без охлаждения жидкостью. Поэтому наиболее целесообразным методом разрезки стекло- и углепластиков является разрезка алмазными отрезными кругами.  [c.150]

Недостаточное совершенство и нестабильность технологии изготовления, структурные особенности стеклопластиков, колебания свойств составляюш,их компонентов сказываются на случайных отклонениях механических свойств этих материалов. Поэтому определение допускаемых напряжений, запасов прочности при расчетах деталей из стеклопластиков, назначение нормативных требований к материалу нужно проводить с учетом рассеяния их прочностных характеристик, которое, естественно, изменяется в зависимости от условий нагружения, формы и размеров конструктивных элементов. Для расчета на прочность недостаточно, таким образом, знания среднего предела прочности, так как назначение допускаемых напряжений по средним значениям не  [c.67]

Физико-механические свойства некоторых типов стеклопластиков на основе фенольных смол и их модификаций приведены в табл. 47.  [c.402]

Пластические массы представляют собой материалы на основе высокомолекулярных органических соединений, обладающие в определенной фазе своего производства пластичностью, позволяющей формовать изделия. Кроме основы, служащей связующим, многие пластмассы имеют так называемый наполнитель для повышения механических свойств, обычно 40...70 %, и небольшие добавки — пластификаторы, смазочные материал >1, красители. Наполнители позволяют сильно изменять свойства пластмасс, например стеклопластики и углепластики имеют даже прочность стали, а газонаполненные (азотом, воздухом) пластики обладают малой плотностью, низкой теплопровод-  [c.37]


Противоположным свойству пластичности является хрупкость, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2—5%, в ряде случаев измеряется долями процента. К хрупким материалам относятся чугун, высокоуглеродистая инструментальная сталь, камень, бетон, стекло, стеклопластики и др. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.  [c.35]

Как известно, тело называется анизотропным, если в каждой его точке упругие свойства различны в различных направлениях. Такими свойствами обладают кристаллы и конструктивно анизотропные тела, композиты, в том числе стеклопластики, многослойные фанеры и др. В общем случае анизотропного тела определяющие уравнения, связывающие напряжения и деформации, имеют вид  [c.113]

Пусть, например, тело обладает по отношению к упругим свойствам тремя плоскостями симметрии. Такое тело называют ортотропным. Примерами таких тел могут служить некоторые типы стеклопластиков, многослойная фанера и др.  [c.115]

Композиционные конструкционные материалы (например, биметаллы, стеклопластики и др.) образуются объемным сочетанием химически разнородных компонентов с четкой границей раздела. Такие материалы обладают свойствами, которыми не обладает каждый из компонентов, взятый в отдельности. Композиционные материалы могут обладать весьма высокими механическими, диэлектрическими, жаропрочными и другими свойствами.  [c.15]

Анизотропным однородным будем считать такое тело, упругие свойства которого в разных направлениях различны, т. е. соотношения ежду напряжениями и деформациями (между и в случае малых деформаций определяются тензором упругих постоянных , компоненты которого изменяются при преобразованиях системы координат. Такими свойствами обладают кристаллы и конструктивно-анизотропные тела. Среди последних, например, стеклопластики (тела, образованные густой сеткой стеклянных нитей, скрепленных различными полимерами—смолами), многослойные фанеры и др. (рис. 15 а — полотняное переплетение стеклоткани б—многослойные модели армированных стеклопластиков). В случае конструктивной анизотропии предполагается, что малый объем бУ содержит достаточное число ориентирующих элементов, т. е., по выражению А. А. Ильюшина, является представительным.  [c.42]

В анизотропных телах положение осложняется в тех случаях, когда анизотропия криволинейна. Например, цилиндр, изготовленный из стеклопластика или углепластика путем намотки, ортотропен, но упругие свойства его обладают цилиндрической симметрией, в цилиндрических координатах модули упругости и коэффициенты температурного расширения постоянны. Но при переходе к декартовым координатам тензоры Ei и а будут уже не постоянными, а функциями координат Ха, поэтому даже равномерное температурное ноле вызовет напряжения. Эта задача легко решается методом, совершенно подобным тому, который был применен в 8.12 для трубы из изотропного материала. Присваивая радиальному направлению индекс единицы, мы запишем уравнение упругости в форме (10.6.4). Теперь уравнение для функции напряжений оказывается следующим  [c.385]

Это условие достаточно хорошо описывает прочностные свойства материалов типа стеклопластиков и им подобных, у которых различны прочностные свойства при растяжении, сжатии и смене знака касательного напряжения на площадках, составляющих угол л/4 с осями ортотропии (рис. 8.19).  [c.171]

Теперь возьмем стержень из стеклопластика или, для конкретности, широко применяемое и весьма популярное у рыболовов-спортсменов стеклопластиковое удилище. Оно изготовлено из плотно уложенных в продольном направлении тончайших стеклянных нитей, соединенных эпоксидным связующим. Каждая нить обладает той же хрупкостью, что и обычный стеклянный лист. Эпоксидная матрица также достаточно хрупкая. Композиция пластических свойств не приобретает. Если стеклопластиковый стержень подвергнуть испытанию на растяжение, остаточные деформации при разрыве будут ничтожными. И вот на такой композиционный материал нанесем алмазом поперечную риску. При изгибе удилища ничего похожего на поведение стеклянного листа мы не обнаружим. Развитие трещины блокируется поверхностями раздела между стеклом и матрицей. Композиция, сохранив хрупкость, приобрела вязкость.  [c.370]


Теневой метод применяют в основном для контроля листов малой и средней толщины, изделий из материалов с большим рассеянием УЗК (покрышек колес). При особенно большом рассеянии используют временной теневой метод (контроль бетона, огнеупоров). Условием его применения является двусторонний доступ к изделию. В случае, когда это условие не выполняется, может быть использован зеркально-теневой метод (например, для контроля железнодорожных рельсов). Теневой эхо-метод и сквозной эхо-метод применяют для повышения чувствительности теневого метода к мелким дефектам. Различные варианты методов прохождения применяют для контроля физико-механических свойств бетона, чугуна, стеклопластиков, древесностружечных плит, технических тканей и т. д.  [c.203]

Контроль прочности стеклопластиков. Стеклопластики являются орто-тропными материалами, прочностные и упругие свойства коюрых зависят от направления армирующих волокон.  [c.286]

Как наука механика композиционных материалов зародилась сравнительно недавно, хотя идея использования комбинации металлов, керамики, стекла, полимеров и т. д. для получения материалов с уникальными свойствами известна давно. Собственно говоря, сама природа использовала принцип такой комбинации при создании, например, костей (твердый хрупкий апатит, связанный прочным мягким белковым веществом) и древесины (волокна целлюлозы, связанные лигнином). В настоящее время наиболее широко применяются следующие композиты железобетон, стеклопластики, биметаллы, графите- и боро-эпоксиды.  [c.5]

В композитах с металлической и полимерной матрицами имеется много общих проблем, связанных с поверхностью раздела. Например, аппретирование в стеклопластиках обеспечивает образование переходной зоны между упрочнителем и матрицей. С другой стороны, можно убедиться в том, что для применяемых на практике металлических композитов характерно подобное же изменение свойств при переходе через поверхность раздела. Если компоиенты полностью нерастворимы, химически инертны и не смачиваются, то в композите отсутствует связь, обеспечивающая необходимые свойства. Модифицирование поверхностей в таких композитах с целью создания связи приводит к появлению градиента состава в той зоне, где формируется связь. Из этих соображений вытекает следующее определение поверхности раздела, предложенное в первой главе  [c.78]

Основное внимание уделяется композитам, армированным минеральными волокнами, среди которых важное место занимают стеклопластики. Современным композиционным материалам на основе углеродных, борных и карбидокремниевых волокон, представляющим наибольший интерес вследствие присущего им комплекса уникальных свойств, но менее изученным, посвящена отдельная глава книги.  [c.5]

Попытки установить корреляцию между эксплуатационными характеристиками армированных пластиков и основными положениями химии поверхностных явлений оказались безуспешными. Адгезия красок, каучуков и герметиков к поверхности минеральных веществ и прочность стеклопластиков (особенно после выдержки в воде) очень слабо зависят от контактных углов смачивания, поверхностного натяжения адгезива, наличия непрочных пограничных слоев, морфологии и химии поверхности минеральных наполнителей и других важных факторов. Вполне вероятно, что при оценке адгезионных свойств по механическим характеристикам композитов могут использоваться отдельные параметры или их сочетания, которые оказываются несущественными при рассмотрении адгезии полимерных цепей на молекулярном уровне.  [c.182]

Он оказался полезным для изучения усталостного разрушения и коррозионного растрескивания под нагрузкой. В биметаллических изделиях и клеевых соединениях даже при нагрузках, не превышающих 30 % от разрушающих, можно распознавать плохие соединения по эмиссии, вызванной началом разрушения связи между слоями. Для пластмасс характерно отсутствие эффекта Кайзера при повторных нагружениях каждый раз возникает эмиссия, активность которой несколько уменьшается при переходе от цикла к циклу. Стеклопластики обладают свойством послезвучания , т. е. при неизменяющейся нагрузке эмиссия продолжается (рис. 118).  [c.321]

Стеклотекстолит типа КАСТ на фе-нолформальдегидной связке отличается невысокой ударной вязкостью. Наибольшая ударная вязкость при достаточно высокой теплостойкости достигается в стеклопластике СТ911-1А с эпоксидной смолой в качестве связки. Неориентированные стекловолокниты содержат хаотично расположенные в плоскости (реже в пространстве) дискретные, короткие волокна. Для таких стеклопластиков характерна большая, чем у ориентированных стеклопластиков, изотропия свойств. В то же время прочность и жесткость неориентированных стеклопластиков меньше прочности и жесткости ориентированных стеклопластиков (рис. 13.9). Плотность стеклопластиков составляет 1500-2000 кг/м . В результате их удельные характеристики прочности сопоставимы с соответствующими характеристиками сталей. Стеклопластики способны длительное время работать при 200-300 °С. Температурное воздействие в несколько тысяч градусов  [c.316]

Использование метода акустической эмиссии при механических испытаниях образцов и конструкций полезно для изучения механизма разрушения. Например, анализ кривых, подобных показанным на рис. 114, дает возможность исследовать движение дислокаций во время пластической деформации, а также процесс хрупкого разрушения. Таким образом, этим методом можно оценить хрупкость, вязкость, твердость и другие характеристики металлов. Он оказался полезным для изучения усталостного разрушения и коррозионного растрески-ванпя под нагрузкой. В биметаллических изделиях и клеэвых соединениях даже прп нагрузках, не превышающих 30% от разрушающих, можно распознавать плохие соединения по эмиссии, вызванной началом разрушения связи между слоями. Для пластических масс характерно отсутствие эффекта Кайзера при повторных нагружениях каждый раз возникает эмиссия, интенсивность которой несколько уменьшается прп переходе от цикла к циклу. Стеклопластики обладают свойством послезвучаппя , т. е. при неизменяющейся нагрузке эмиссия продолжается (рпс. 117).  [c.291]


Применение пластмассы для моделей, подмодельных плит и стержневых ящиков также позволяет значительно сократить цикл технологической подготовки в литейном производстве. По опыту отечественных и зарубежных заводов наиболее распространенными материалами для изготовления модельной пластмассовой оснастки являются эпоксидные и полиакриловые смолы. Однпм из основных способов упрочнения моделей из пластмассы можно считать армирование их стекловолокном и стеклотканью. Модели из стеклопластиков по свойствам и физико-механическим показателям не уступают металлическим. В условиях машинной формовки пластмассовые модели работают не хуже металличе-  [c.213]

Анизотропия кристаллов объясняется их атомной структурой, но существуют материалы, у которых определяющие их анизотропию структурные элементы имеют значительно большие размеры. Примером может служить древесина, расположение видимых невооруженным глазом волокон создает относительно высокую прочность в направлении оси ствола и малую прочность в поперечном направлении. В этом отношении можно сказать, что природа распорядилась прочностью целлюлозы, из которой, в основном, состоит древесина, наилучншм образом. По этому принципу в технике создают так называемые композитные материалы, примером которых могут служить стеклопластики. Тонкая стеклянная нить имеет высокую прочность, укладывая слои такой нити, пропитывая их смолой и полимеризируя, получают монолитные пластины. Чередуя направления укладки слоев, можно менять степень и характер анизотропии с тем, чтобы использовать прочность волокна наивыгоднейпшм образом. В последние годы были получены и промышленно освоены высокопрочные волокна, значительно превосходящие по своим свойствам стеклянное волокно и, что особенно важно, имеющие значительно более высокий модуль упругости. Наибольшее распространение получили волокна бора и углерода, которыми армируют пластики и металлы.  [c.41]

Первым примером такого рода композитов, получивших достаточно широкое практическое применение, служат стеклопластики (мы не говорим здесь об известных с глубокой древности саманных постройках, т. е. о композитах глина — солома, механические свойства которых совсем не плохи). Перемешивая полимерную массу с мелко изрубленным стеклянным волокном, мы получаем первый пример композита с хаотическим армированием. Прочность такой пластмассы выше, чем прочность неар-мированного материала, однако потенциальная прочность стеклянного волокна используется при этом далеко не полностью, разрушение всегда происходит по матрице, стеклянные волокна не разрываются, а выдергиваются из пластмассы. Следует заметить, что изделия из хаотически армированных пластиков, например полиэтилена, изготовляются обычными способами — путем формования, выдавливания, литья. Поэтому стандартное технологическое оборудование оказывается пригодным для получения таких изделий.  [c.684]

Анизотропия прочности. Выше рассмотрены случаи разной сопротивляемости разрушению материалов при растяжении и сжатии. Однако эти свойства материалов часто зависят от ориентации направлений главных напряжений по отношению к некоторым характерным для данного материала направлениям. Например, в стеклопластиках и им подобных армированных материалах, в которых в относительно мягкой матрице (пластик, металл) уложена с данной системой ориентации относительно жесткая арматура (стекловолокно, борволокно, углеродные усы и т. п.), прочность на разрыв в направлении армирования существенно выше прочности на разрыв в перпендикулярном направлении. В то же время прочность  [c.170]

Стеклопластики находят применение в химических, нефтеперерабатывающих и нефтехимических производствах как самостоятельные конструкционные материалы и как защитные покрытая. Нестандартное стеклопластиковое оборудование может быть изготовлено в условиях почти любого предприятия путем намотки на оправку соответствующей конфигурации нескольких слоев стеклоткани, пропитанной термореактивной смолой (полиэфирной, эпоксидной, фенолформалъдегидной и т.д. - в зависимости от коррозионных свойств рабочей среды и других требовгший), с последующей сушкой или термообра-бохкойгрежимы которых зависят от типа использованных материалов.  [c.100]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]

Двукратное увеличение межслой-нон прочности при сдвиге эпоксифе-нольных углепластиков достигается травлением углеродных волокон концентрированном азотной кислотой в течение 30 мин [20]. Прочность при растяжении в трансверсальном направлении углепластиков вследствие обработки волокон в азотной кислоте возрастает в 1.6 раза. Некоторое улучшение этих характеристик в слоистых стеклопластиках достигается также за счет пспольчЗования волокон некруглого поперечного сечения — эллипсоидных, ромбовидных, треугольных и др. Изменение формы углеродных волокон не оказывает заметного влияния на механические свойства углепластиков. Указанный метод приводит лишь к некоторому улучшению трансверсальных и сдвиговых свойств композиционных материалов, но не решает проблемы. Вследствие слоистой структуры в материале сохраняются плоскости, через которые напряжения передаются низкомодульным и низкопрочным связующим, что не исключает опасности преждевременного их разрушения. Особенно это относится к материалам, воспринимающим в конструкциях сдвиговую и трансверсальную нагрузку в условиях повышенных температур.  [c.9]

Экспериментальные данные свидетельствуют о том, что при растяжении слоистых материалов с относительно невысокой степенью анизотропии упругих свойств, присущей ортогонально-армированным материалам, характер распределения деформаций по длине и толщине образца мало зависит от его формы (параметра /П1). Так, для стеклопластика. Г-4С с укладкой волокон 5 1 при нагружении в направлении большей степени ориентации волокон изменение значений Щ] в 1,7 раза практически не сказывается на относительном изменении деформаций нижней и верхней поверхностей ("П = +1) рабочей части образца. Относительные показатели деформаций при т) = о образцов-лопаток незначительно выше, чем образцов-полосок. Примерно то же наблюдается в случае испытаний ортогонально-армированных углепластиков. Увеличение степени анизотропии упругих свойств способствует повышению чувствительности относительных деформаций к изменению формы образца. Это хорошо иллюстрируют данные, полученные при растяжении образцов из однонаправленных углепластиков в направлении волокон.  [c.33]

Прочность при одноосном нагружении. Представление о прочностных свойствах материалов, образованных системой трех нитей, можно получить из опытных данных, приведенных в табл. 5.11. Данные получены на двух типах трехмерноармированных стеклопластиков, изготовленных на основе алюмоборосиликатных волокон. Анализ представленных данных свидетельствует о существенных различиях в значениях прочностей при растяжении в направлениях армирования по сравнению с прочностью при изгибе или сжатии этих матери-  [c.154]


Прессование полуфабрикатов проводилось при давлении (до 4—6 МПа), значительно превышающем давление прессования обычных угле-, боро- и стеклопластиков, что обусловлено необходимостью уплотнения материала и снижения пористости. Отклонения давления прессования от указанного значения могут быть причиной большой пористости или разрушения волокон нитевидными кристаллами. Температурный режим получения материалов на основе вискернзрванных волокон соответствовал температурному режиму, принятому для эпоксидного связующего. Технология получения рассматриваемого класса материалов в значительно большей степени, чем получение других материалов, определяет их структуру и свойства. Обусловлено это тем, что материалы, изготовленные на основе вискеризован-ных волокон или тканей, имеют основную арматуру — волокна или ткань и вспомогательную — кристаллы — предназначенную для улучшения сдвиговых свойств и прочности на отрыв в трансверсальном направлении. Указанные свойства определяются характером расположения нитевидных кристаллов. Последние могут распределяться хаотически во всем объеме материала или только в трансверсальных плоскостях, что определяется способом вискернзации и технологией получения материалов. Хаотическое распределение кристаллов во всел объеме является наиболее приемлемым способом одновременного повышения сдвиговых свойств материала во всех трех плоскостях. Модули сдвига в этом  [c.202]

Свойства композиционных материал лов на основе вискернзованных волокон. Этот класс материалов был экспериментально изучен на угле- и стеклопластиках. Были исследованы материалы, изготовленные на основе ленты из углеродных волокон, стеклоткани сатинового переплетения, жгутов из стекло- и углеродных волокон. Арматурой для изготовления стеклопластиков служили непрерывные волокна из алюмоборосиликатного стекла, а также стеклоткань ТС-8/3-250, подвергавшаяся вискеризации нитевидными кристаллами двуокиси титана ТЮ2 и нитрида алюминия A1N. В качестве арматуры для углепластиков были использованы жгуты из углерод-  [c.207]

Несколько иной характер зависимости упругих и прочностных свойств от содержания нитевидных кристаллов имеют композиционные материалы, изготовленные на основе вискериэо-ванных тканей. На рис. 7.9 приведены экспериментальные данные для стеклопластиков, изготовленных на основе ткани сатинового плетения. Вискери-зация ткани осуществлялась осаждением нитевидных кристаллов ТЮ2 из аэрозоля и A1N из суспензии. На каждую точку, приведенную на графике, испытано по семь образцов. Коэффициент вариации значений характеристик не превышал 10 %.  [c.213]

Матвеев И. А. Механические свойства трехмерноармированных стеклопластиков с переменным углом укладки арматуры по высоте. — Механика композитных материалов, 1983, № 4,  [c.219]

Вязкость композитного материала тесно связана не только со свойствами его составляющих, но и, что часто более важно, с характером их взаимодействия. Это можно проиллюстрировать по меньшей мере двумя наглядными примерами. Первым из них является стеклопластик (вязкий композит, изготовленный из двух хрупких составляющих) вторым — древесина. Обычная древесина представляет собой древесные волокна, связанные лигниновой матрицей, и очень вязка, а те же волокна в эпоксидной матрице крайне хрупки. И в стеклопластике, и в древесноволокнистом композите вязкость определяется, главным образом, поверхностью  [c.266]

Вплоть до 1964 г. ни одна из существующих теорий не могла дать полного представления о процессах, происходящих на поверхности раздела, и объяснить положительное влияние различных обработок на свойства волокон. По-видимому, обработка существенным образом влияет на свойства поверхности раздела, однако степень влияния на различные свойства волокон различна. Независимо от предаказаний любой теории необходимым условием для (Получения высокопрочных слоистых стеклопластиков, предназначенных для иопользования в разных условиях и, как правило, в течение длительного времени, является эффективная передача напряжений во (В1С6М объеме композита от волокна к волокну через поверхность раздела. Вероятно, обработка каким-то образом способствует не только упрочнению адгезионной связи на поверхности раздела, но и ее сохранению во времени,  [c.28]

Первое промышленное применение силановые аппреты нашли в стеклопластиках, и поэтому большинство ранних исследований структуры силанов, их свойств и механизма их действия было выполнено именно в этой области. Приводимое ниже обсуждение основано на результатах указанных исследований, однако требования к химическим свойствам силановых аппретов не зависят от того, применяются ли они в композитах, упрочненных стекловолокном, или в композитах с порошковыми наполнителями.  [c.143]


Смотреть страницы где упоминается термин Стеклопластики — Свойства : [c.255]    [c.259]    [c.193]    [c.52]    [c.402]    [c.20]    [c.103]    [c.215]    [c.304]    [c.186]    [c.19]   
Композиционные материалы (1990) -- [ c.56 , c.57 ]



ПОИСК



Желиховская, С.И.Попко. Влияние технологических факторов на свойства дозирующегося стекловолокнита и стеклопластиков на его основе

Исследование механических свойств стеклопластика при сдвиге и изгибе

Контроль упругих свойств стеклопластика в конструкциях Г Теоретические основы контроля упругих характеристик

Некоторые сведения о физико-механических свойствах стеклопластиков

Объемная теплоемкость и тепловые эффекты термодеструкМетоды изучения теплофизических свойств стеклопластиков

Свойства стеклопластиков на основе термопластов

Стеклопластик

Стеклопластик ориентированный фенольный, аблнтпвные свойства

Стеклопластики Механические свойства

Стеклопластики ориентированные Свойства упруго-вязкие

Стеклопластики свойства демпфирующие

Стеклопластики стабилизация свойств

Теплофизические свойства стеклопластиков в J условиях термодеструкции

Упругие свойства стеклопластиков

Факторы, влияющие на свойства стеклопластиков



© 2025 Mash-xxl.info Реклама на сайте