Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жесткость возрастание

Напряженное состояние в процессе взрывной запрессовки трубки характеризуется достаточно высокой жесткостью Oi/OT 2 (рис. 6.12). Кроме того, в области активного пластического деформирования материала наблюдается высокий абсолютный уровень напряжений, что связано с возрастанием напряжения течения при больших скоростях деформирования.  [c.352]

Увеличение относительного размера наружных диаметров с одновременным введением внутренних полостей и отверстий приводит к резкому возрастанию прочности и жесткости при одновременном уменьшении массы, улучшает условия работы валов и сопряженных с ними деталей. В современных машинах высокого класса массивные валы почти полностью заменены полыми.  [c.106]


Натурные испытания. Простейшим методом проверки деталей на проч-, пость и жесткость является их испытание на стенде в условиях, наиболее приближающихся к рабочим. Деформации измеряют индикаторами или тензометрами. Хорошо поддаются стендовым испытаниям многооборотные роторы, например рабочие диски центробежных или осевых компрессоров, нагруженные главным образом центробежными силами. Частоту вращения испытываемой детали постепенно увеличивают до частоты, превышающей на 20 — 40% рабочую частоту, что соответствует возрастанию напряжений на 40—100% по сравнению с расчетными. Такие испытания воспроизводят действительные условия нагружения (кроме термических напряжений, возникающих в роторах тепловых машин).  [c.159]

Рабочие поверхности зубьев, очерчивают дугами окружностей, проведенными из центров, которые обычно располагают в плоскости внешних торцов зубьев. При возрастании передаваемого муфтой момента пружина облегчает зубья и точки контакта пружины с зубьями двух полумуфт сближаются. Благодаря этому жесткость и несущая способность муфты возрастают. Муфта является наиболее совершенной среди - муфт с металлическим упругим элементом.  [c.435]

Очевидно, что для обратной зависимости жесткости системы от амплитуды колебаний, т. е. при уменьшении этой величины (росте действующего значения емкости электрической колебательной системы) с возрастанием амплитуды колебаний, мы будем иметь уменьшение частоты свободных колебаний при увеличении их амплитуды. Подобную закономерность нетрудно получить, например, если в выражениях, аппроксимирующих нелинейные  [c.104]

Расчет воздействия на твердое тело взрыва накладного заряда ВВ. Изменением плотности и массы накладного заряда ВВ можно варьировать давления, достигаемые при нагружении образца, а также реализующиеся за счет взрыва скорости метаемых пластин. Детонационная волна после выхода на контактную границу с инертным материалом инициирует в нем 5 дарную волну, интенсивность которой зависит от динамических жесткостей преграды и ВВ. В обратную сторону в продукты детонации идет отраженная от контактной поверхности ударная волна сжатия или волна разрежения в зависимости от соотношения динамических жесткостей материала преграды и продуктов детонации. Во всех рассматриваемых ниже задачах динамическая жесткость инертного материала больше динамической жесткости продуктов взрыва ВВ, и поэтому в зоне контакта происходит возрастание давления с торможением, а затем и разлетом ПД от контактной границы.  [c.271]


S < 1 — большой недостаток муфт постоянного наполнения и в больщинстве случаев совершенно недопустим, так как такая муфта не может быть надежным предохранительным устройством. Поэтому при конструировании гидромуфт принимаются меры к тому, чтобы уменьшить их жесткость и тем самым исключить резкое возрастание момента при увеличении скольжения. Применение порога и других устройств позволяет изменить наполнение проточной полости гидромуфты жидкостью в процессе работы. Этой цели удовлетворяют конструкции гидромуфт с порогом и дополнительной камерон (рис. 194). Изменение наполнения проточной полости такой гидромуфты происходит автоматически только в зависимости от нагрузочного момента ка ведомом валу. Гидромуфта переменного наполнения с порогом н дополнительной камерой относится к нерегулируемым муфтам с автоматическим переменным наполнением проточной полости,  [c.305]

Решение задач метрического синтеза кулачкового механизма должно выполняться на основе учета механических показателей или его качественных критериев, ограничивающих условия, и критериев высшей пары — профиля кулачка. К числу первых относятся угол давления у коэффициент полезного действия механизма т] коэффициент возрастания усилия Н коэффициент динамичности коэффициент прочности или жесткости элементов механизма а коэффициент потерь от трения в кинематических парах х степень удаления механизма от зоны заклинивания Q габарит или компактность механизма Г.  [c.113]

Значит, напряжение в элементе возрастает по логарифмическому закону. Ползучесть материала наращиваемого тела приводит к передаче части усилия от исходного тела Qp на вновь рожденные элементы. Однако при Т = 5 сут, когда свойство ползучести не успевает проявиться в полной мере, напряжение в элементе а 2 = = йр — о возрастает почти на всем отрезке времени [0, Т. При Г — 20 сут вслед за участком возрастания появляется участок разгрузки, обусловленный ползучестью. При Т = 100 сут вслед за двумя рассмотренными участками появляется третий участок, на котором напряжение возрастает. Этот участок обязан своим появлением сильной неоднородности возраста, в силу которой жесткость исходного тела I2p увеличивается со временем по сравнению с жесткостью вновь рожденных элементов.  [c.108]

Предельная пластическая деформация или степень пластической деформации, предшествующая разрушению элемента конструкции, связана однозначно с жесткостью напряженного состояния (-Pv/Tt) [4]. с возрастанием жесткости напряженного состояния уменьшается объем материала, в пределах которого может быть реализована пластическая деформация, что в общем случае может быть охарактеризовано следующим образом  [c.29]

Реализуемы объем пластически деформированного материала к моменту начала разрушения может быть охарактеризован жесткостью напряженного состояния о, / Тр [32]. Возрастание жесткости напряженного состояния уменьшает объем материала, в котором может произойти пластическая деформация. Наиболее жестким является трехосное напряженное состояние. Работа совершаемой пластической деформации в этом случае минимальна. При понижении сопротивления деформации по одной из главных осей возникает возможность релаксации вдоль этой оси, и условия деформирования смягчаются. Полное отсутствие сопротивления деформированию по одной из осей приводит к плосконапряженному состоянию. Плосконапряженное состояние материала соответствует максимальной вязкости разрушения при прочих равных условиях.  [c.84]

Процентное соотношение размеров ямок оценивали относительно диаметра ямки 20 мкм. С возрастанием жесткости напряженного состояния процент ямок диаметром больше 20 мкм, возрастал до 50 %. После жесткости напряженного состояния 1,0-1,2 площадь поверхности, занятая  [c.90]

Гофрированные пластины и оболочки могут соединяться со слоистыми панелями, что приводит к получению большей жесткости и прочности, характерных для толстых сечений, без чрезмерного возрастания массы.  [c.281]

Телескопические стрелы тяжелых кранов имеют более сложную конструкционную форму (см, рис. 1). Сложность формы вытекает из необходимости выполнения особенно жестких требований в отношении собственного веса с одной стороны, увеличение количества составных элементов и соединяюш,их ее сварных швов, что ведет к уменьшению долговечности конструкции, особенно при возрастании контактных нагрузок, вызванных опорами, с другой — возможность создания более благоприятных условий для восприятия контактной нагрузки, лучшего распределения жесткости, устранения концентраторов напряжений в высоконапряженных зонах. Требуемая долговечность нередко достигается за счет внедрения других видов технологии изготовления основных элементов металлоконструкций холодной гибки, прокатки и т. д. Это можно наблюдать в конструкциях кранов последних выпусков, обеспечивающих грузоподъемность 2500 кН и длину телескопической стрелы до 100 м. Однако в этом случае усталостные испытания основных узлов стрелы и стрелы в целом стали необходимым элементом процесса проектирования новой конструкции. Практически они до сих пор не реализованы, так как задачу по проектированию стрелы относят к чисто статической проблеме.  [c.373]


Характер деформирования материала в плоской волне нагрузки определяется ее интенсивностью. При низкой интенсивности, Не превышающей предел упругости по материалу распространяется упруго-пластическая волна [298—300, 375, 385] при высокой интенсивности возрастание объемной жесткости материала приводит к формированию ударной волны со скачкообразным изменением параметров на ее фронте. На фронте ударной волны достигается наиболее высокая скорость пластической деформации материала.  [c.143]

Возрастание скорости распространения возмущений с ростом интенсивности нагрузки, вызванное возрастанием жесткости материала при сжатии, приводит к тому, что элементы волны сжатия с более высоким уровнем напряжений догоняют ее элементы, соответствующие более низкой величине напряжений, формируя ударный фронт. В отличие от упруго-пластической волны, на ударном фронте параметры материала меняются скачком, образуя разрыв (в математическом смысле) значений массовой скорости, напряжений, деформаций и плотности при прохождении по материалу ударной волны.  [c.162]

В первом случае (х = 1) неустойчивость имеет обычный статический характер по мере увеличения нагрузки жесткость системы уменьшается, при значении а = я/2 обращается в нуль и при дальнейшем возрастании нагрузки становится отрицательной. В соответствии с этим корни  [c.456]

Ленин машины к фундаменту ее вибрационные характеристики существенным образом зависят от массы и жесткости последнего. В практике машиностроения неоднократно отмечались случаи, когда машина, нормально работающая на одном фундаменте, достигала аварийного состояния при перестановке ее на другое основание. Возрастание вибрации происходило, главным образом, вследствие наступления резонанса системы машина—фундамент. Поскольку истинные вибрационные характеристики этой системы могут быть получены только при испытании в реальных эксплуатационных или достаточно близких к ним условиях, нормы по ограничению уровней вибрации турбо- и гидрогенераторов, со-  [c.28]

На рис. VI 1.20 изображены кривые, приближенно показывающие характер зависимости между величиной силы, нагружающей амортизатор с резиновым упругим элементом, и параметром, учитывающим время возрастания деформации амортизатора до заданной величины. Для компактности графиков на шкале аргумента можно взять логарифмический масштаб. Нетрудно видеть, что различным режимам нагружения амортизатора соответствуют разные значения его жесткости при одной и той же величине деформации .  [c.338]

Выпуклым торец втулки а получается, если резиновая втулка не крепится к арматуре, а запрессовывается. Втулки б позволяют при односторонней осевой нагрузке снизить напряжения растяжения на кромках при сдвиге. Втулки в отличаются равенством напряжений во всех точках при осевом сдвиге. Втулки гид отличаются переменной характеристикой жесткости при значительном ее возрастании после упора бурта в сопрягаемую деталь.  [c.728]

Отсюда видно, что потери на жесткость уменьшаются с возрастанием диаметра блока О, а потери на трение в цапфах уменьшаются с уменьшением отношения (НО.  [c.365]

Полученные выше выводы о неограниченном возрастании момента Ми, ft+i и ускорения гк являются следствием исходного предположения о бесконечной жесткости звеньев механизма. Анализ динамических явлений в самотормозящемся механизме при учете конечной жесткости звеньев в случае невыполнения условия (18) показывает, что в режиме заклинивания происходит апериодическое нарастание момента Mk, s+i до оо. На величину максимального момента существенное влияние оказывает жесткость звеньев механизма [1].  [c.21]

Как уже отмечалось, с уменьшением диаметра цилиндра, подкрепляющего отверстие (штуцера), увеличивается цилиндрическая жесткость и растут сварочные поперечные напряжения. При этом за счет увеличения жесткости соединения вклад напряжений в КИН уменьшается. Следовательно, воможна ситуация, когда с увеличением сварочных растягивающих напряжений Осв за счет возрастания жесткости соединения величина /Стах, зависящая от СГсв и (Ттах, не будет практически увеличиваться, а АК, связанный с размахом эксплуатационных напряжений, будет уменьшаться (см. рис. 5.29). Тогда долговечность штуцерного соединения с большими сварочными растягивающими поперечными  [c.321]

Кроме того, для деталей, работающих в условиях повышенных температур, надо учитывать изменение механических свойств материалов, с тем чтобы при изменившихся свойствах не было нарушения прочности и жесткости. Сказанное относится в основном к деталям, подвергающимся температурным Еоздействиям сравнительно непродолжительное время для деталей, длительно работающих при высоких температурах, например для деталей паровых турбин, надо учитывать явление ползучести, т. е. непрерывного возрастания пластических деформаций при постоянных напряжениях, или явление релаксации, выражающееся в том, что при постоянных деформациях происходит падение напряжений.  [c.325]

Первые три профиля отличаются простотой изготовления. Преимущество треугольной и ромбовидной форм заключается в придании оперению большей жесткости по сравнению с трапециевидной формой. С точки зрения аэродинамики некоторой выгодой обладает трапециевидный профиль, так как при одинаковой с треугольным и ромбовидным профилями толщине он может обеспечить меньшее сопротивление и большее аэродинамическое качество. У чечевицеобразного профиля сопротивление еще меньше, чем у трапециевидного (при одинаковой относительной толщине). Выбором соответствующих углов заострения передней и задней кромок можно добиться хорощей жесткости крыла. Увеличивая углы заострения передней кромки, следует учитывать возможность возрастания волнового сопротивления, а также повышенную чувствительность режима обтекания к изменению углов атаки. Так, с увеличением углов заострения уменьшаются углы атаки, при которых наступает режим обтекания с отошедшей волной, когда резко возрастает сопротивление, нарушается безотрывный характер течения, что вызывает снижение подъемной силы и, как следствие, ухудшение устойчивости.  [c.63]


Для других типов нелинейностей мы, естественно, получили бы другие выражения для частоты свободных колебаний нелинейной системы при конечных амплитудах колебаний. Эти соотношения, характеризующие зависимость частоты свободных колебаний от их амплитуды, дают нам приближенное математическое выражение свойства неизохронности данной системы. Разобранные примеры с нелинейной емкостью показывают, что с ростом амплитуды колебаний возрастает действующее значение ее жесткости , т. е. уменьшается действующее значение емкости. Подобная жесткая система в согласии с полученными выражениями характеризуется возрастанием частоты колебаний с ростом их амплитуды, т. е. с увеличением сообщенного системе запаса колебательной энергии.  [c.104]

Кривые А В дают условия перехода к новой форме равновесия и соответствуют изгибу в плоскости минимальной жесткости EJ ). Лю(5опытно, что с возрастанием момента критическая сила возрастает. Это происходит потому, что  [c.324]

На рис. 6.2,6 прямая А AM. является огибающей семейства диаграмм циклического деформирования с уменьшающимся (вследствие циклического упрочнения) в геометрической прогрессии размахом деформации 2еар. Циклическое упрочнение определяется повышением напряжений за полуцикл на величину Дст и характеризуется углом а. Угол р наклона огибающей зависит от соотношения жесткостей пластически и упруго деформированных элементов положение конечной точки Ш зависит также от уровня исходной деформации 2еа. Если амплитуда действующего напряжения (Та выше разрушающего напряжения ffp для пластического элемента, то при возрастании напряжения до уровня Ср 106  [c.106]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]

Рассматринаемая модель расчета приводит к значениям модулей сдвига 0x2 и 023 значительно большим, чем упрощенные зависимости (см, табл. 5.2) для слоистой модели. С увеличением жесткости армирующих волокон чувствительность их к изменению параметра а., также увеличивается (см, рис. 5.11). Возрастание модулей сдвига с приближением параметра к граничным точкам интервала его изменения объясняется наложением иа модель более жестких связей. При. этом неравенства (5.30) переходят в равенства, прослойки связующего отсутствуют, и в большем объеме элементарных параллелепипедов (см. рис. 5.2) выполняются условия Фойгта.  [c.145]

Скорость деформации и температура аналогичным образом влияют на параметры процесса разрушения через изменение жесткости напряженного состояния, не меняя самого процесса в определенном диапазоне изменения указанных факторов. Сочетание низкой скорости деформации и высокой степени стеснения пластической деформации может изменить механизм вязкого разрушения, например от преимущественного формирования ямочного рельефа в условиях отрыва до вязкого внутризеренного, путем сдвига при нарушении сплошности по одной из кристаллографических плоскостей. Указанный переход в развитии процесса разрушения был выявлен при испытании круглых образцов диаметром 5 мм с надрезом из жаропрочного сплава ЭИ437БУВД при температуре 650 °С. Медленный рост трещины характеризовался следующими элементами рельефа гладкие фасетки со следами внутризеренного множественного скольжения по взаимно пересекающимся кристаллографическим плоскостям, вышедшим в плоскость разрушения, и волнистый рельеф в виде пересекающихся ступенек, которые также отражают процесс кристаллографического скольжения (рис. 2.6а). Аналогичный характер формирования поверхности разрушения был выявлен в изломе на участке ускоренного роста трещины при эксплуатационном разрушении диска турбины двигателя (рис. 2.66). Диск был изготовлен из того же жаропрочного сплава ЭИ437БУВД. Разрушение диска было усталостным. Сопоставление описываемых. элементов рельефа в ситуации монотонного растяжения с низкой скоростью деформации и повторное циклическое нагружение дисрса в эксплуатации привели к идентичному процессу разрушения. В отличие от разрушения образца в диске развитие трещины происходило при медленном возрастании нагрузки в момент за-  [c.91]

Летные испытания первых реактивных истребителей, при которых скорость полета достигала 910—950 клг/час, подтвердили результаты ранее выпол ненных теоретических и эксперимента.льных работ. Они показали, что отработанная и широко использовавшаяся аэродинамическая схема свободноне-сущего моноплана с трапециевидным крылом утолщенного профиля допускает увеличение скорости лишь в пределах до 0,8 от скорости звука на соответствующих высотах, что превышение этого предела приводит к тяжелым нарушениям устойчивости и управляемости самолета, что увеличение скорости сопряжено со значительным возрастанием воздушных нагрузок, испытываемых летящим самолетом. Следовательно, для практического освоения околозвуковых и звуковых скоростей обязательны переход к новым аэродинамическим схемам, отказ от применения дерева как конструкционного материала и разработка новых принципов проектирования цельнометаллических самолетов с крыльями и оперением высокой прочности и жесткости.  [c.373]

На рис. 32 приведены примеры изменения размаха напряжений по числу циклов, при этом выбраны три наиболее характерных вида зависимостей. На рис. 32,а наблюдается стабилизация процеоса изменения размаха напряжений с. первых циклов нагружения. Уменьшение значений Ли, т. е. процесс разуирочнения, происходит лишь при больших значениях числа циклов (Л >10 ). Материалы, имеющие такой характер изменения напряжений по числу циклов, называют циклически стабильными. При однократном изменении характера процеоса (рис. 32,6) упрочнение (возрастание. Аа) сменяется разуирочнением во второй половине срока службы. В анализе изотермического малоциклового нагружения этот случай не рассматривают, материалы классифицируют лишь как циклически стабильные, циклически упрочняющиеся и разупрочняющие. Смена процессов упрочнения и разупрочнения может быть и неоднократной (рис. 32,в). Уменьшение Аа в случаях, показанных на рис. 32,а и можно объяснить появлением трещин и уменьшением жесткости образца, но зависимость на рис. 32,в (уменьшение Аи сменяется увеличением размаха наиряжений) иодтверждает особенности термоциклического неизотермического нагружения и его влия-  [c.55]

При ударном нагружении с малой скоростью обеспечение достаточной жесткости динамометра, необходимой для поддержания заданного параметра испытания e== onst, требует увеличения сечения динамометра, что ведет к понижению в нем уровня напряжений и деформаций, а следовательно, и к снижению величины сигнала с датчика. Последнее существенно затрудняет регистрацию в связи с возрастанием уровня (относительного) помех. Методика регистрации малых величин деформации с помощью полупроводниковых, пьезоэлектрических [416] или емкостных датчиков [267] (рис. 40) обладает рядом преимуществ.  [c.105]


За внутренний параметр выберем смещение опорной площадки стола, за внешний — время возрастания тяги с момента воспламенения от нуля до величины, равной стартовому весу ракеты, Для построения зависимости между этими параметрами необходимо решение динами-чески-теплопрочностной задачи. Должно быть составлено уравнение движения массы ракеты и уравнения движения стержней, изгибающихся под действием продольных сил. Жесткость стержней должна вычисляться шаг за шагом в зависимости от температуры. По диаграмме определится степень опасности состояния,  [c.43]

При возрастании рассеивания размеров в партии шлифованных деталей следует прежде всего удостовериться в работоспособности стабилизатора давления, промыть спиртом или чистым бензином электрические контакты датчика и убедиться в отсутствии утечек воздуха. Кроме того, в этом случае следует проверить жесткость крепления пневматической лробки и правильность ее центрирования по отношению к оси обрабатываемых колец.  [c.220]


Смотреть страницы где упоминается термин Жесткость возрастание : [c.412]    [c.339]    [c.144]    [c.243]    [c.45]    [c.391]    [c.356]    [c.91]    [c.11]    [c.184]    [c.154]    [c.172]    [c.338]    [c.44]    [c.16]   
Расчёты и конструирование резиновых изделий Издание 2 (1977) -- [ c.33 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте