Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость возмущения деформации

Отсюда следует, что скорость распространения возмущений деформации формоизменения  [c.51]

Возрастание скорости распространения возмущений с ростом интенсивности нагрузки, вызванное возрастанием жесткости материала при сжатии, приводит к тому, что элементы волны сжатия с более высоким уровнем напряжений догоняют ее элементы, соответствующие более низкой величине напряжений, формируя ударный фронт. В отличие от упруго-пластической волны, на ударном фронте параметры материала меняются скачком, образуя разрыв (в математическом смысле) значений массовой скорости, напряжений, деформаций и плотности при прохождении по материалу ударной волны.  [c.162]


Таким образом, возмущение (деформация) может распространяться в упругом твердом теле с двумя различными скоростями. Если деформация происходит без поворота осей, то она распространяется со скоростью i если же деформация происходит без. изменения объема, то она распространяется со скоростью С2.  [c.367]

С точки зрения молекулярно-кинетической теории газов процесс распространения возмущений состоит в следующем. Если в произвольном месте среды произошло изменение (возмущение) параметров среды (давления, плотности, температуры и т. д.), то молекулы, получившие приращение количества движения (положительное или отрицательное), передадут избыточный импульс близлежащим молекулам. Таким образом, фронт возмущения будет распространяться с определенной скоростью без изменения направления движения. Явление распространения волн в упругой среде можно представить себе как процесс установления внутреннего равновесия. При этом следует помнить о различии между перемещающейся деформацией (возмущением, волной), которая существует в виде движущегося уплотнения или разрежения газа, и смещением частиц газа во фронте волны. Для малых возмущений скорость движения частиц всегда несоизмеримо меньше скорости распространения деформации.  [c.78]

В это уравнение входит первая производная, численные значения которой в значительной степени зависят от возмущений, вносимых реальным экспериментом, в особенности в интервале больших скоростей сдвиговых деформаций. Поэтому для обработки по данному методу следует применять только сглаженные кривые  [c.87]

Таким образом, при скоростях, обеспечивающих равномерную деформацию образца и получение на жестком испытательном оборудовании диаграммы с ниспадающим участком, последний имеет смысл для статических задач. При этом задача может считаться статической, если скорости возмущений находятся в пределах, отвечающих оговоренным условиям. В противном случае возмущения являются динамическими, постановка краевой задачи с учетом ниспадающих участков диаграммы лишена смысла и следует рассматривать возникающие разрывы и повреждения явным образом [198].  [c.196]

Первые из зависимостей (59.6), (59.7) определяют законы распространения возмущений, вторые — характеризуют скорости и деформации частиц фронта.  [c.255]

Если под воздействием малого случайного возмущения деформация в некоторый момент времени г = О увеличилась на величину Дбд, то возрастает п усилие на зуб, условия равновесия колес при постоянных значениях моментов Му н нарушатся, п угловые скорости колес начнут периодически изменяться, что будет сопровождаться изменением усилия и деформации с той же частотой.  [c.171]


Впереди зоны пластического возмущения или зоны разрушения распространяются упругие волны напряжений и деформаций. Следует различать волны смещений, волны деформаций, т. е. производных от смещений по координатам волны скоростей смещений, т. е. производных от смещений по времени волны напряжений, связанные с волнами упругих деформаций через обобщенный закон Гука. Волны смещений и скоростей имеют относительный сдвиг по времени — на четверть периода по координатам — на четверть длины волны. Из сказанного следует, что скорость и деформация максимальны при нулевом смещении и что деформация, как производная от смещения, равна нулю при максимальном смещении.  [c.227]

Ультразвуковая дефектоскопия использует упругие колебания и волны. Акустические колебания — это механические колебания частиц упругой среды вокруг своего положения равновесия, а акустические волны — распространение в этой среде механического возмущения (деформации). Для контроля применяют колебания частотой 0,5...2,5 МГц. Акустические волны в жидкости или газах характеризуются одной из следующих величин изменением давления р, смещением частиц и, скоростью колебательного движения V, потенциалом смещения или колебательной скорости ф. Для плоской гармонической волны все перечисленные величины взаимосвязаны через потенциал скорости следующим образом  [c.20]

Можно поэтому считать, что главная ось тензора скоростей деформирования с наибольшей скоростью продольной деформации в возмущенном движении будет лежать в меридиональной плоскости (рис. 188) и образовывать малый угол с осью z. Пусть Gj, G2, G3 — главные напряжения в какой-либо точке сечения тела с возмущенной границей  [c.628]

Первые из зависимостей (77.6), (77.7) определяют законы распространения возмущений, вторые — связывают скорости и деформации частиц на характеристиках.  [c.371]

Скорость точки ( тела, полюса, света, звука, некоторых движений, механизма, деформации, прямолинейного движения, вылета (падения) снаряда, распространения возмущений, течения жидкости.. ). Скорость в данный момент ( за промежуток времени, в системе координат, в координатах, до удара, после удара...).  [c.83]

В теле при динамическом и импульсивном нагружениях возникают возмущения различной природы (нагрузки, разгрузки, отражения и т. д.), распространяющиеся с определенными конечными скоростями, величина которых зависит от состояния тела и характера деформаций, в виде волн возмущений (волн нагрузки, волн разгрузки, отраженных волн), называемых волнами напряжений.  [c.7]

Реальное тело не обладает абсолютной жесткостью. Поверхность тела, на которую действует давление продуктов взрыва, деформируется, что оказывает влияние на интенсивность импульсивных нагрузок. Реакция тела на действие нагрузок сводится к следующему 1) вблизи поверхности материал тела под действием высокого давления продуктов взрыва вначале сильно сжимается 2) при внезапном уменьшении давления поверхность тела возвращается в ненапряженное состояние, хотя материал может получить значительную пластическую деформацию 3) в теле возникают возмущений, вызванные действующим давлением продуктов взрыва, длительность действия которых мала, так что длина импульса в материале невелика, однако возмущения имеют вид волны с крутым фронтом. Распространение этих волн проходит с высокими скоростями, т. е. в этом случае, очевидно, зарождаются ударные волны. При большой интенсивности возмущений тело может разрушаться либо в отдельных локальных областях, либо по всему объему.  [c.17]

Изучение процесса распространения волн возмущений в теле сводится к установлению зависимостей изменения во времени напряжений, деформаций, скоростей или перемещений частиц и других параметров состояния материала в любой точке области возмущений. При экспериментальном исследовании необходимо измерять перечисленные параметры в любой момент времени для произвольной  [c.18]


Пусть тело находится в условиях динамического или импульсивного нагружения, вызванного действием внешних объемных и поверхностных сил, температуры и других факторов. При таком нагружении в теле распространяются волны напряжений, образуя области возмущений, в которых тело оказывается в напряженно-деформированном состоянии с тензором напряжений (а) и тензором деформаций (е), его частицы находятся в движении с вектором скорости V.  [c.30]

При постоянном модуле упругости импульс напряжений может распространяться на значительное расстояние без изменения формы, изменение модуля упругости приводит к искажению импульса напряжений конечной амплитуды. Для большинства деформируемых тел уменьшается за пределом упругости и в материале при достаточно больших деформациях возникают пластические волны, распространяющиеся со скоростью, меньшей скорости распространения упругой волны. Однако существуют такие деформируемые тела (резины, полимерные материалы), в которых большие деформации приводят к ориентации длинных молекулярных цепочек, что вызывает возрастание модуля упругости . Поэтому при распространении возмущений в таких материалах зарождаются волны особой природы, называемые ударными волнами. В деформируемых телах ударные волны возникают и в том случае, когда распространяются волны расширения большой амплитуды. Как показано Бриджменом, зависимость между средней деформацией е и средним напряжением а в твердых телах может иметь вид е = (—аа + Ьо )/3, где а, Ь — постоянные величины. Модуль объемного сжатия К при малых давлениях стремится к постоянной 1/а, при высоких давлениях принимает значение 1/(а — 2Ьа) (т. е. при высоких давлениях К растет). Упругие волны расширения распространяются со скоростью а , но модуль К при высоких давлениях возрастает, это приводит к тому, что скорость волны большой амплитуды больше скорости волны малой амплитуды. В результате образуется ступенчатый фронт, характерный для ударной волны. Модуль сдвига G в этом случае играет незначительную роль, так как задолго до достижения достаточно высокого давления предел текучести будет пройден и материал ведет себя подобно жидкости.  [c.38]

Шаровые тензоры (5а) и (SJ соответствуют объемному деформированию. Возмущения этого вида деформации распространяются со скоростью ау. Отнесем тело к системе координат х и запишем уравнения движения элемента тела  [c.50]

Определим характеристики напряженно-деформированного состояния среды тензор напряжений (а) и тензор деформаций (е), а также характеристики движения — вектор скорости V и плотность р среды в областях возмущений.  [c.86]

Предположения относительно механического поведения среды сводятся к тому, что вблизи поверхности полости вынужденное движение среды вызывает большие пластические деформации, развивающиеся в относительно короткое время. На достаточно большом расстоянии это движение вызывает лишь упругие или вязкие возмущения малой амплитуды, средние значения скоростей деформаций во всех областях деформации за время образования полости, вплоть до конца первой стадии расширения, оказываются небольшими, влияние упрочнения и скорости деформаций учитывается динамической диаграммой Ог-Эе/ или диаграммой Тг у , полученной пересчетом с помощью зависимостей  [c.88]

Частицы среды в областях возмущений движутся в радиальном направлении со скоростью V, которой соответствуют скорости деформаций  [c.89]

По среде распространяются волны напряжений, образуя области возмущений, где среда находится в напряженно-деформированном состоянии. Это состояние характеризуется тензором напряжений (а) и тензором деформаций (е) движение частиц среды характеризуется вектором скорости у плотность среды р. Требуется определить характеристики напряженно-деформированного состояния и движения частиц среды в областях возмущений. Для этого согласно общим соображениям, изложенным в гл. 1, необходимо для каждой области возмущений построить тензор кинетических напряжений (Т) (с учетом физико-механических свойств среды), затем по формулам (1.3.49) найти тензор напряжений (о), вектор скорости у и плотность среды р.  [c.109]

Пусть тело массы т ударяется в преграду со скоростью Оо- В результате в теле и преграде образуются области возмущений, вызванные распространением волн напряжений различной природы. Напряженно-деформированное состояние области возмущений характеризуется тензором напряжений (о) и тензором деформаций (е), движение частиц в этой области описывается вектором скорости V и плотностью р. Указанным характеристикам напряженно-деформированного состояния преграды и движения частиц в области возмущений ставится в соответствие тензор кинетических напряжений (Т), принимаемый за основную искомую величину.  [c.137]

В момент приложения давления о зарождается волна напряжений, которая распространяется вдоль стержня с конечной скоростью а. При этом образуется область возмущений, где стержень находится в напряженно-деформированном состоянии. Этому состоянию соответствует напряжение а и деформация  [c.221]

Подставив полученное выражение в формулу (V.29), будем иметь скорость распространения малых возмущений в трубе при наличии деформации труб  [c.125]

Внезапное нагружение, например нагружение, вызванное взрывом или сейсмическим толчком, приводит к существенно динамическим задачам. При этом уравнения равновесия необходимо заменять уравнениями движения. При приложении нагрузки ее действие не передается мгновенно всем частям тела от нагруженной области начинают излучаться с конечной скоростью волны напряжений и деформаций. Так же, как и в известном случае распространения звука в воздухе, в каждой точке не возникает возмущения, пока ее не достигнет волна. Однако в упругом теле существует не один, а несколько типов волн и ати волны имеют разные скорости распространения.  [c.489]


Возмущения типа симметричного взрыва внутри сферической полости излучают волны или импульсы, которые также обладают сферической симметрией. Перемещения при этом будут чисто радиальными. Перемещения и являются функцией сферической радиальной координаты ) г и времени t. В силу симметрии эти деформации являются безвихревыми, и следовательно, мы будем иметь дело только с одной скоростью распространения i m. (273) или (277)).  [c.512]

Рассмотренная картина представляет собой частный случай весьма общего явления возмущения, возникшие в какой-либо области сплошной среды, обычно распространяются в этой среде со скоростью, в простейших случаях зависящей только от свойств среды (а в более сложных — и от характера возмущения), и переносят с собой энергию, которой обладало возмуще ше в начальный момент. В упругом стержне в результате распространения возмущения деформаций и скоростей, как мы видим, происходит перенос энергии упругой деформации и кинетической энергии. В других случаях, как, например, в случае жидкости, находящейся в поле тяжести, возмущение ее поверхности, вызванное брошенным камнем, распространяется в виде кольцевых волн, несущих с собой кинетическую и потенциальную энергию подымающихся и опускающихся колец поверхностного слоя жидкости. Эта общеизвестная картина волн на поверхности жидкости дала название всем явлениям распространения возмущений, несугцих с собой энергию в сплошной среде. Волнами называются всевозможные возмущения различной природы и масштабов, начиная от рассмотренных выше кратковременных импульсов деформации в упругом стержне и вплоть до гигантских волн цунами, возникающих на поверхности океана в результате подводных землетрясений.  [c.496]

Как видно из приведенных результатов, волна в дискретной среде отличается от волны в сплошной среде колебаниями, постепенно затухающими при х = onst, бесконечностью скорости распространения возмущений (следствие предположения о мгновенном возникновении взаимодействия шариков при их сближении), расплывающимся с течением времени квазифронтом — областью, в которой напряжения относительно быстро возрастают, но не скачком, как на фронте, а плавно (скорости и деформации при удалении от квазифронта с увеличением 1 л — t экспоненциально затухают и становятся исчезающе малыми).  [c.19]

При выходе волны нагрузки или волны разгрузки на поверхность тела или при столкновении двух волн напряжений друг с другом имеет место явление отражения, при этом зарождается отраженная волна нагрузки или разгрузки, распространяющаяся с конечной скоростью йо или Ъ в обратном направлении, образуя область возмущений отраженной волны. Эта область расположена внутри области возмущений соответствующей прямой волны и является вторичной. Она ограничена той частью поверхности тела, где имеется отражение, и фронтом отраженной волны (рис. 3, а) или фронтом отраженной волны и поверхностями фронтов прямых волн (рис. 3, б). Движение частиц тела в области возмущений отраженной волны описывается вектором скорости Уотр и плотностью Ротр напряженно-де-формироВанное состояние — тензором напряжений (а)отр и тензором деформаций (е)отр. Состояние тела в области возмущений может быть упругим, вязкоупругим, упругопластическим и другим и зависит от природы возмущения и физико-механических свойств материала.  [c.8]

Девиаторы (ОД, (О ) связаны с деформацией формоизменения. Возмущения, соответствующиеэтому виду деформирования, распространяются со скоростью йф. Уравнения движения элемента в этом случае имеют вид  [c.51]

В области возмуш,ениг1 разгрузки, как и в области возмущений нагрузки, напряженное состояние сложное, ему соответствуют объемные и сдвиговые деформации, поэтому волна возмущений разгрузки распространяется со скоростью  [c.67]

Волна нагрузки зарождается в момент приложения давления / ол(0 к поверхности полости и распространяется в среде с конечной скоростью йо. образуя область возмущений нагрузки, где среда находится в напряженно-деформированном состоянии, которое характеризуется тензором напряжений (а) агр и тензором деформаций (е) агр частицы среды перемещаются в радиальном направлении со скоростью Унагр. плотность среды рнагр- Этим характеристикам соответствует тензор кинетических напряжений (Т) агр, который необходимо построить. Область возмущений нагрузки ограничена поверхностью полости радиуса и поверхностью фронта волны нагрузки Гн =/ () -ф йа1 (рис. 40).  [c.99]

Чтобы сохранить в модели некоторые свойства, присущие твердому телу (сопротивляемость деформациям сдвига, упругость, пластичность, существование упругих предвестников ударных волн и волн разгрузкн, связанных с наличием более высокой скорости распространения возмущений, чем это следует из чисто гидродинамической модели), вводится девиатор напряжений т". В случае однофазной среды его принимают изменяющимся линейно с ростом деформаций по закону Гука до некоторого предела, после чего он должен удовлетворять условию пластпч-ностп. В главных осях тензора напряжений закон Гука, определяемый модулем сдвиговой упругости G, можно записать в виде  [c.147]


Смотреть страницы где упоминается термин Скорость возмущения деформации : [c.259]    [c.263]    [c.183]    [c.73]    [c.376]    [c.170]    [c.26]    [c.474]    [c.50]    [c.50]    [c.52]    [c.65]    [c.70]    [c.107]   
Механика жидкости и газа Издание3 (1970) -- [ c.61 , c.62 ]



ПОИСК



Возмущение

Возмущение скорости

Деформации скорость



© 2025 Mash-xxl.info Реклама на сайте