Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зазоры — Определение ь подшипниках качения

Рис. 84. Схемы для определения зазоров в подшипниках качения а — радиального б — осевого в — начального радиального (до монтажа подшипника) г — посадочного радиального (подшипник смонтирован в узел) Рис. 84. Схемы для <a href="/info/97008">определения зазоров</a> в <a href="/info/1111">подшипниках качения</a> а — радиального б — осевого в — начального радиального (до <a href="/info/66643">монтажа подшипника</a>) г — посадочного радиального (подшипник смонтирован в узел)

Использование вероятностных методов расчета. Основы теории вероятности изучают в специальных разделах математики. В курсе деталей машин вероятностные расчеты используют в двух видах принимают табличные значения физических величин, подсчитанные с заданной вероятностью (к таким величинам относятся, например, механические характеристики материалов ст , o i, твердость Ни др., ресурс наработки подшипников качения и пр.) учитывают заданную вероятность отклонения линейных размеров при определении расчетных значений зазоров и натягов, например в расчетах соединений с натягом и зазоров в подшипниках скольжения при режиме жидкостного трения.  [c.10]

Выбор посадок колец подшипников качения на вал и в корпус зависит от значения, направления и характера нагрузок, типа II размеров подшипника, условий эксплуатации, метода регулирования зазоров и условий сборки. Различают местное, циркуляционное и колебательное нагружения неподвижных колец местная нагрузка воспринимается ограниченным участком дорожки качения и передается на ограниченный участок корпуса циркуляционная нагрузка воспринимается всей окружностью дорожки качения колебательная нагрузка распределяется на определенный участок кольца.  [c.321]

Распределение нагрузки между телами качения. Действующая на подшипник радиальная нагрузка воспринимается телами качения в зоне, ограниченной дугой не более 180° (при отсутствии натяга между кольцами и телами качения). При определении нагрузок, воспринимаемых каждым телом качения, расположенным в нагруженной зоне, исходят из следующих допущений 1) радиальный зазор в подшипнике равен нулю 2) кольца подшипника не изгибаются под действующей нагрузкой 3) геометрические размеры тел качения и колец идеально точные.  [c.449]

Определение (с учетом действия силы веса) критических чисел оборотов роторов и валов, вращающихся в подшипниках качения или скольжения, которые всегда имеют существенный зазор. Расчеты показывают, что учет радиального зазора, как указано во введении, может привести к изменению расчетной величины критических оборотов более чем на 25%, т. е. быть больше общепринятого сейчас в конструкторской практике запаса по критическим оборотам роторов и валов.  [c.115]

Для определения контактных напряжений в подшипнике качения необходимо знать закон распределения сил между телами качения. При решении этой статически неопределимой задачи полагают, что подшипник изготовлен идеально, зазоры, натяги и силы трения отсутствуют. Собственными деформациями колец, тел качения, вала и корпуса пренебрегают. Под действием радиальной силы F,. тела качения нагружаются неравномерно (рис. 17.5, а).  [c.432]


При определении пригодности подшипников качения для дальнейшей эксплуатации руководствуются следующим посадочные поверхности подшипника не должны иметь задиров и следов коррозии беговые дорожки внутреннего и наружного колец должны быть чистыми, гладкими, без трещин (волосовин), раковин, вмятин и шелушения шарики и ролики должны быть чистыми, гладкими, без трещин, раковин и выщербленных мест, а также должны иметь правильную форму и одинаковые размеры сепараторы должны быть цельными, без разрывов гнезда сепаратора не должны иметь износа, допускающего выпадение шариков или роликов наружное кольцо должно легко вращаться относительно внутреннего и в то же время без радиального зазора.  [c.370]

Так, при создании опор, на подшипниках качения, воспринимающих ударные динамические нагрузки, при которых номинальная долговечность подшипников < 5000 ч, возникает необходимость в проведении ряда дополнительных расчетов как самого подшипника (определение напряжений и деформаций в контакте элементов качения, характера распределения нагрузки между рядами тел качения в многорядном подшипнике и между телами качения в одном ряду, изменения в подшипнике радиального зазора и осевой игры в зависимости от величины посадочного натяга и температурных колебаний и т. д.), так и других элементов подшипникового узла.  [c.374]

Гидродинамическая теория смазки, разработанная применительно к подшипникам скольжения, может быть использована также и при определении работоспособности подшипников качения для заданных условий эксплуатации (нагрузка, частота вращения, характеристика смазки). Как видно из проведенной на рис. 29 эпюры распределения давлений, смазка при вращении шипа во втулке увлекается в сужающийся зазор, образуя там несущую масляную пленку. Место расположения минимального зазора ко несколько смещено относительно направления действия нагрузки Q. В соответствии с гидродинамической теорией смазки предполагается, что в этом зазоре вязкость и плотность смазки не изменяются, а шип и втулка не имеют упругих деформаций, поскольку в данном случае давления вследствие большой площади несущих поверхностей относительно невелики. Грузоподъемность (Я) гидродинамического подшипника скольжения  [c.438]

Результаты осмотра и измерений определяют объем ремонта или необходимость замены подшипника. Для определения степени износа подшипников замеряют радиальные зазоры между телами качения и обоймой (радиальным зазором называют сумму зазоров по одному диаметру между телами качения и обоймами). Наиболее удобно радиальный зазор замерять между телами качения и наружной обоймой в верхней части подшипника, когда остальные зазоры по этому диаметру равны нулю, т. е. когда тела качения и внутренняя обойма смещены до отказа вниз.  [c.185]

Перед началом ремонта подшипника качения проверяют состояние тел качения, сепараторов и обойм, радиальный и осевой зазоры в подшипнике, плотность насадки внутренней обоймы на вал и внешней обоймы в корпус подшипника, осевые зазоры внешней обоймы в корпусе. Для определения степени износа подшипника замеряют радиальные зазоры между телами качения и обоймой. Зазоры допускаются в пределах от 0,01 до 0,1 мм при диаметре отверстия до 100 мм и не более 0,3 мм при диаметре выше 100 мм. Наличие завЫ шейных зазоров вызывает вибрацию, стуки и другие дефек ты в работе механизмов, поэтому такие подшипники заменяют. Посадку шарико- и роликоподшипников на вал нужно проводить в соответствии с установленными нор-ма.ми.  [c.303]

По конструктивным особенностям подшипники делятся на стандартные и насыпные. Стандартные подшипники (рис. 16.11, а), выпускаемые специализированными заводами, состоят из наружного / и внутреннего 3 колец, тел качения 2 (шариков или роликов), заключенных в зазор между дорожками качения обоих колец, и сепаратора 4, который удерживает тела качения в определенном положении.  [c.204]


Регулировка и контроль осевых зазоров радиально-упорных и упорных шарико- и роликоподшипников. Подшипники качения могут быть собраны в узле с различными радиальными и осевыми зазорами (рис. 8.25, а, б, в). Под радиальным или осевым зазором подразумевают полную величину радиального или осевого перемещения в обоих направлениях одного кольца подшипника относительно другого под действием определенной нагрузки или без нее. Различают начальные зазоры (измеряемые до сборки подшипника с сопряженными деталями), посадочные зазоры (измеряемые в подшипнике, установленном на валу и в корпусе), контрольные зазоры (измеряемые в собранном под-  [c.248]

Подшипники качения (рис. 19.1) представляют собой готовый узел, основным элементом которого являются тела качения — шарики 3 или ролики, установленные между кольцами 1 и 2 н удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором 4. В процессе работы тела качения катятся по беговым дорожкам колец, одно из которых в большинстве случаев неподвижно. Распределение нагрузки между несущими телами качения неравномерно (рис. 19.2) и зависит от величины радиального зазора  [c.213]

Значения коэффициентов радиальной и осевой нагрузок х и у) и коэффициента влияния осевого нагружения е приведены в табл. П-16 и П17 в зависимости от отношения Fa Vfr), которое влияет на распределение нагрузки между телами качения в подшипнике. С увеличением осевой нагрузки Та при отношении Fal(Vfr)>e происходит выборка зазора, рабочая зона в подшипнике возрастает и улучшается распределение нагрузки, в данном случае определение Р ведем по формуле (1). При малых значениях или до некоторого отношения Fa/(VFr) e из-за радиального зазора в подшипнике возникает повышенная неравномерность распределения нагрузки между телами качения, при этом осевая нагрузка не учитывается, принимаем л =1, а у = 0 и определение Р ведем только по радиальной нагрузке Fr по формуле (2)  [c.108]

Выбор посадки подшипников качения оказывает большое влияние на точность вращения шпинделя, а также и на другие критерии работоспособности шпиндельного узла. С увеличением натяга ухудшается форма дорожек качения, но наряду с этим в еще большей мере происходит усреднение погрешностей подшипников. Усреднение погрешностей усиливается после устранения зазоров в подшипнике и при увеличении наТяга до определенного значения, что и предопределяет целесообразный выбор посадок.  [c.182]

Практика эксплуатации машин показывает, что подавляющее большинство неисправностей, за исключением повреждений аварийного характера и вызванных химико-тепловым воздействием, возникает в соединениях деталей. При этом отказ в работе каждого соединения наступает при возникновении определенных, присущих только данному соединению неисправностей независимо от того, где соединение работает — на тепловозе, электровозе, вагоне, автомобиле, станке или в любом другом изделии машиностроения. Например, отказ в работе шлицевого соединения наступает при нарушении посадки между шлицами (увеличении зазора) из-за износа или смятия шлицев. Потеря работоспособности зубчатого соединения вызывается износом или усталостным разрушением зубьев. Соединения с гарантированным натягом выходят из строя при ослаблении деталей в посадке, узлы с подшипниками качения — при ослаблении колец в посадке или при появлении повреждений в самих подшипниках, резьбовые соединения — при износе, вытянутости или срыве резьбы и т. д. Поэтому технологические приемы разборки, восстановления и сборки каждого типа соединения и узла одинаковы и будут отличаться в каждом отдельном случае только в зависимости от материала, термообработки, прочности и характера повреждения деталей, а такл е от экономической целесообразности применения того или иного способа ремонта.  [c.80]

Как уже отмечалось, формулы (7) и (8) действительны только для подшипников с нулевым зазором. С увеличением радиального зазора угол нагруженной зоны уменьшается, а давление Ра на наиболее нагруженный шарик увеличивается. Влияние зазора обычно учитывается поправочными коэффициентами, а именно в формуле (7) вместо коэффициента 4,37 принимается коэффициент 5, а в формуле (8) коэффициент 4 заменяется коэффициентом 4,6. Имеется ряд работ, посвященных исследованию влияния радиального зазора на распределение нагрузки между телами качения, а также на статическую грузоподъемность и долговеч.чость подшипников качения [19, 294]. Эти исследования показали, что такая замена коэффициентов в формулах (7) и (8) не всегда оправдана. Принятые коэффициенты действительны только для некоторых конкретных зазоров, которые могут быть установлены в подшипнике после его. монтажа, и при определенном перепаде температур между его деталями.  [c.37]

Благодаря тщательному монтажу и обильной смазке в подшипниках качения практически не обнаруживается износа даже после продолжительной работы. Однако по истечении определенного времени, зависящего от величины нагрузки и числа оборотов, на рабочих поверхностях возникают усталостные явления, которые в начальной стадии проявляются в виде мелких рисок, а в дальнейшем наблюдается шелушение или выкрашивание. Первичные риски нередко вызываются неоднородностью материала, имеющей место в любой стали. Опыт показывает, что усталостные явления возникают у одинаковых подшипников при одних и тех же условиях эксплуатации через разные промежутки времени. Рассеивание долговечности, наблюдаемое у подшипников одной и той же партии, достигает 20—40. Такое значительное рассеивание объясняется тем, что подшипник состоит из многих деталей, прочность и износостойкость которых в пределах определенных допусков всегда различны. Размеры деталей выдерживаются в пределах допусков, величины которых обусловлены техническими условиями- Разноразмерность тел качения оказывает существенное влияние на распределение нагрузки между ними и на величины возникающих контактных напряжений. При точечном контакте величины Отах существенно зависят от соотношений главных кривизн соприкасающихся деталей. Большое влияние на долговечность подшипников оказывает шероховатость рабочих поверхностей, внутренние зазоры и другие факторы. Поскольку заранее невозможно учесть влияние всех этих факторов, нельзя также заранее определить долговечность каждого из подшипников в партии.  [c.66]


Регулировочные устройства. Подшипники качения могут быть собраны в узле с различными радиальными и осевыми зазорами. Под радиальным е или осевым а зазором понимают полную величину радиального или осевого перемещения в обоих направлениях одного кольца подшипника относительно другого под действием определенной силы или без нее (см. рис. 10.33).  [c.203]

Продольный разрез рабочего цилиндра быстроходного червячного пресса приведен на фиг. 201. Крутящий момент передается червяку 5 клиноременной передачей через шпиндель 8, вращающийся на подшипниках качения. Осевые усилия, возникающие при экструзии, воспринимаются двумя радиально-упорными подшипниками 7. Перед запуском пресса обогреватель 2 нагревает головку 1. Для отвода избыточного тепла предусмотрена охлаждающая система 4. Вода подводится к штуцеру 3. Для питания пресса материалом предусмотрен вибропитатель 6. Температура экструзии для данной скорости вращения червяка и определенной дозировке перерабатываемого материала устанавливается регулированием давления (дросселированием) материала при выходе из цилиндра в головку. При вращении гайки 9 экструзионная головка 1 перемещается и изменяется зазор между концом червяка и деталью 10.  [c.258]

Шпиндель 1 жесткой конструкции смонтирован на высокоточных подшипниках качения. В передней опоре установлены два парных конических роликовых подшипника 3 класса А. Регулировка зазора в подшипниках 3, а при необходимости и создание определенного натяга производится гайками 4 через уплотнительное кольцо 19.  [c.268]

Единой методики выбора величины площади поджатия и определения усилия прижима до настоящего времени не создано, о объясняется сложностью гидродинамической задачи, при решении которой устанавливаются закономерности распределения давления в торцовом зазоре работающего насоса. Затруднения возникают из-за того, что необходимо учитывать непостоянство величины торцового зазора, вызываемое многочисленными причинами биением торцов роторов различием диаметров тел качения подшипников (в случае применения подшипников качения) пульсацией давления в нагнетательной магистрали компрессией жидкости в междузубовых впадинах неровностями на поверхности торцов роторов и уплотняющих деталей неплоскостностью соприкасающихся поверхностей роторов и уплотняющих деталей упругой деформацией поверхностей скольжения зубьев в зонах контактирования действием неуравновешенных масс привода.  [c.143]

Рекомендуемый в литературе метод расчета посадок для подшипников качения сводится к определению диаметрального зазора по выбранному относительному зазору и проверке на основе гидродинамической теории смазки выполнимости условия (95) при найденном зазоре и эксплуатационных условиях.  [c.174]

Квалитеты 6-й и 7-й применяются для ответственных соединений в механизмах, где к посадкам предъявляются высокие требования в отношении определенности зазоров и натягов для обеспечения точности перемещений, плавного хода, герметичности соединения, механической прочности сопрягаемых деталей, а также для обеспечения точной сборки деталей (подшипники качения нормальной точности в корпусах и на валах, зубчатые колеса высокой и средней точности на валах, подшипники скольжения и т.п.).  [c.23]

Выбор коэффициентов X и У при расчете эквивалентной нагрузки Р (см. табл. 6.5) производится с учетом следующих соображений по мере увеличения Ра выбираются зазоры в подшипнике, и распределение нагрузки между телами качения становится более благоприятным (возрастает дуга контакта, в пределах которой тела качения воспринимают нагрузку), в работу вступает большее число тел качения. При этом увеличение силы Ра до определенного значения не приводит к снижению работоспособности подшипника, поэтому расчет его эквивалентной нагрузки ведется только по радиальной нагрузке Рг, а осевая Ра не учитывается.  [c.198]

Крутящего моментов подвижный шарнир равных угловых скоростей, осуществляющий связь с главной передачей, крепится к показанному в правой части рисунка незаштрихованному фланцу. Болт с шестигранной головкой, проходящий через шейку ступицы, стягивает детали, передающие крутящий момент, и прижимает внутренние кольца конических роликовых подшипников к дистанционной втулке. Регулировка зазора в подшипниках такой конструкции невозможна. Раньше из втулок с различными полями допусков с помощью измерительного приспособления отбиралась втулка, соответствующая по длине данной паре подшипников. Однако расчетом, выполненным с использованием законов теории вероятности, можно доказать, что при выдерживании определенных допусков натяг подшипников качения или возникающий зазор остаются в допустимых границах, поэтому от подбора подходящих втулок можно отказаться. Такой вид монтажа используют для сборки опоры переднего колеса автомобиля Форд-фиеста (рис. 3.1.57, а), только в опоре при отсутствии дистанционной втулки внутренние кольца прижаты один к другому и поэтому наружные кольца обоих подшипников контактируют с перемычкой, имеющей малый допуск на ширину.  [c.130]

Вращающееся внутреннее кольцо должно быть напрессовано на вал с определенным натягом, предусмотренным посадками ПК (согласно ГОСТ 3325—55 ), а именно Пп, Нп, Тп, Гп- При этом надо учитывать, что до 80% посадочного натяга переходит на дорожку качения внутреннего кольца, и до 30% — на дорожку качения наружного кольца- если последнее также смонтировано с натягом). Этот эффект оказывает влияние на величину монтажного радиального зазора в подшипнике. Если нулевой монтажный зазор является оптимальным с точки зрения распределения нагрузки между телами качения, то в условиях непредвиденных перекосов и нагрева ПК при работе дополнительный зазор, возникающий за счет контактных деформаций, может оказаться недостаточным для предотвращения защемления тел качения. Поэтому при малых нагрузках, в особенности для небольших подшипников, нежелательно применение значительных натягов, что также облегчает задачу монтажа и демонтажа ПК. Однако при больших и тем более ударных нагрузках посадочные натяги следует увеличивать во избежание прово-, рачивания колец относительно посадочных мест. Проворачивание может вызвать задиры, риски от проворота и выход посадочных мест из установленных допусков. Накернивание цапф, как способ восстановления натяга, категорически воспрещается. Проворачивание колец в корпусах наблюдается реже. Оно менее опасно, но нежелательно по тем же соображениям.  [c.416]

Определение критических чисел оборотов роторов и валов, вращающихся в подшипниках качения или скольжения, которые всегда имеют существенный радиальный зазор. Расчеты показь1г 1 3  [c.3]

Путем применения определенной системы посадок и монтажа можно не только строго ограничить зазор, но и создать определенный предварительный натяг, а тем самым — необходимую гарантию от разбалтывания. Слишком тесная посадка (с небольшим натягом) может вызвать в подшипнике большую предварительную нагрузку, что небезопасно, особенно при большом числе оборотов. С другой стороны, слишком свободная посадка приводит к снижению жесткости опоры и точности работы подшипника. С увеличение.м предварительного натяга жесткость опоры возрастает, и уменьшается опасность вибраций. Однако грузоподъемность подшипника возрастает при увеличении предварительного натяга лишь до известного предела, после чего быстро снижается. В подшипниках некоторых типов точная регулировка — ограничение зазора или натяга в подшипнике — обеспечивается конической формой отверстия. Некоторыми фирмами подшипники поставляются с гарантированным зазором нормальным (не обозначается), пониженным или повышенным. Величина этих зазоров обычно задается нормами. Чаще всего, учитывая вoз южнo ть посадки при монтаже, применяют подшипники с повышенным зазором (в однорядных радиальных шарикоподшипниках они обеспечивают также повышенную осевую грузоподъемность). Чем теснее посадка колец, тем большим назначается зазор в подшипнике. Действительная величина зазора в нена-груженном подшипнике после сборки зависит от натяга, с которым запрессовываются кольца. У внутренних колец зазоры уменьшаются на 65—80% величины натяга, у наружных — на 10—20%. Зазор в подшипнике зависит также от температуры, которая у внутреннего кольца обычно на 10—15% выше, чем у наружного. Чем больше зазор в подшипнике, тем больше максимальная сила, действующая на тела качения, что приводит к уменьшению грузоподъемности и долговечности подшипника. При нулевом зазоре нагружена примерно половина тел качения.  [c.260]


В справочнике Р. Д. Бейзельман и Б. В. Цыпкин, Подшипники качения, Машгиз, 1949, стр. 274 дается формула для определения наименьшего предварительного натяга между телами качения, необходимого для предотвращения большого зазора в работающем подшипнике, учитывающая величину деформации тел качения при предварительно приложенной осевой нагрузке.  [c.238]

Радиально-упорные нодшипники используют как опоры точных шпинделей. Эти подшипники, как правило, спаривают с тем, чтобы создать определенный строго заданный зазор между телами качения и беговыми дорожками, Нару кный зазор получают за счет определенного осевого смещения наружных колец пары подшипников по отношению к внутренним. Достигают этого притиркой торцов колец спариваемых подшипников или установкой дистанционных колец между торцами колец подшипника. Для того чтобы установленные зазоры не изменялись при работе подшипников под нагрузкой, их при спаривании нагружают в осевом направлении грузом, задаваемым чертежом при проектировании узла. Так как посадка колец на вал и в корпус с натягом изменяет величину зазора в подшипнике для особо точных узлов чертежом задается величина этого натяга. Если кольца имеют размеры больше задаваемых натягом, их перед установкой доводят до нужного размера.  [c.275]

Сборка узлов с подшипниками качения. Посадки для шарнко-и роликоподшипников, а также отклонение от правильной геометрической формы посадочных поверхностей для вала и отверстия регламентированы ГОСТом 3325—55. При посадке подшипников на вал с большими натягами возможно уменьшение зазоров между кольцами и телами качения или даже защемление последних. Для приближенных расчетов принимают, что уменьшение зазора происходит в пределах (0,55 -f- 0,6) б при запрессовке внутреннего кольца на вал и в пределах (0,65—0,7) б при запрессовке наружного кольца в корпус, где б — натяг в мм. Определение зазоров имеет  [c.466]

В приведенных выше зависимостях ( юрмула для определения коэффициента <7 выведена в работе [5] в предположении существования линейной зависимости деформация — сила для случая контакта пластмассовых шариков со стальными жёлобами, что, как видно из рис. 1У.8, реально лишь при значительных нагрузках (свыше 50 кгс). При более точном расчете необходимо учитывать величину первоначального зазора в подшипнике и нелинейность зависимости де( )орма-ции от нагрузки. При прикидочных ориентировочных расчетах можно считать, что грузоподъемность пластмассовых подшипников качения ниже в три-восемь раз, чем грузоподъемность стальных такой же конструкции и размеров.  [c.156]

В условиях монтажных площадок, когда приходится растачивать отверстие (полумуфт, ступиц и пр.) по существующему валу или протачивать вал под существующее отверстие (для подшипников качения), можно соблюдать требования ГОСТ иа посадки, растачивая деталь не по допускам, указываемым стандартом на вал или отверстие, а исходя из предельных зазоров или натягов, задаваемых стандартом на соединение определенной посадки. При этом допуски на обработку одной детали при существуюп[ей другой будут несколько шире, вследствие чего зиачнтольно легче обработать деталь.  [c.137]

Рассмотрим определение сил взаимодействия звеньев на примере карданного подвеса гироскопических систем, учтя при этом силы тсулонова трения, наличие зазоров в сочленениях, обусловливающих возможность перекоса втулок звеньев относительно осей. Карданный подвес находит широкое применение в гироскопических системах и точность и надежность его действия существенно зависят от правильности определения сил взаимодействия звеньев в шарнирных сочленениях. Рассмотрим простейший карданов подвес (рис. 5.5, а). Основание отмечено на рис. 5.5, а номером 0 и штриховкой, сопряженное с ним звено — подвижное кольцо — номером I. С этим последним с помощью вращательных пар последовательно соединены рамка 2 (кольцо) и платформа 3. Введем следующие обозначения F ,j- и — нормальный и касательный составляющие векторы результативных реакций вращательных кинематических пар, причем Fjp,j = fFгде/, —коэффициент трения скольжения или приведенный коэффициент трения качения подшипников, A j — точки соприкосновения втулок и осей при перекосах в шарнирах. Составим уравнения равновесия сил и моментов сил трех элементов подвеса  [c.91]


Смотреть страницы где упоминается термин Зазоры — Определение ь подшипниках качения : [c.371]    [c.260]    [c.298]    [c.236]    [c.11]    [c.277]    [c.148]    [c.25]    [c.100]   
Справочник машиностроителя Том 4 (1956) -- [ c.227 , c.231 ]



ПОИСК



Зазор

Зазоры подшипниках

Зазоры подшипников качения

Зазоры —Определение

Подшипники качения



© 2025 Mash-xxl.info Реклама на сайте