Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зазоры подшипников качения

На фиг. 167—170 представлены простейшие методы измерения радиальных и осевых зазоров подшипников качения.  [c.584]

Заводской ремонт оборудования 10, 33 Зазоры подшипников качения 291, 292 — подшипников скольжения 305, 310 Заключительные работы 23 Запасная часть 10,  [c.494]

Вибрация электродвигателя. Различные причины вибрации. Таблицы нормальных зазоров в неразъемных и разъемных вкладышах в зависимости от диаметра вала и частоты вращения электродвигателя. Зазоры подшипников качения.  [c.303]


Регулирование подшипников качения. Контроль подшипников качения заключается в проверке посадки их колец, радиального и осевого люфта, состояния рабочих тел вращения и беговых дорожек, температуры корпуса. Допустимая температура нагрева корпуса подшипников качения не должна превышать 60—70 С. Радиальные зазоры подшипников качения не регулируют. Осевой зазор конических подшипников качения в зависимости от конструкции регулируют смещением их внешнего или внутреннего кольца.  [c.505]

Допустимые люфты (зазоры) подшипников качения приведены в табл. 6.16.  [c.52]

Рис. 87. Методы измерения радиальных и осевых зазоров подшипников качения Рис. 87. <a href="/info/3022">Методы измерения</a> радиальных и <a href="/info/65662">осевых зазоров подшипников</a> качения
Опоры с предварительным натягом. Жесткость опор на подшипниках качения может быть значительно повышена при создании предварительного натяга. В обычно отрегулированных подшипниках относительное осевое смещение колец под действием внешней осевой силы складывается из свободного перемещения в пределах имеющегося в подшипнике осевого зазора и упругой деформации в местах контакта тел качения с кольцами подшипника.  [c.124]

Использование вероятностных методов расчета. Основы теории вероятности изучают в специальных разделах математики. В курсе деталей машин вероятностные расчеты используют в двух видах принимают табличные значения физических величин, подсчитанные с заданной вероятностью (к таким величинам относятся, например, механические характеристики материалов ст , o i, твердость Ни др., ресурс наработки подшипников качения и пр.) учитывают заданную вероятность отклонения линейных размеров при определении расчетных значений зазоров и натягов, например в расчетах соединений с натягом и зазоров в подшипниках скольжения при режиме жидкостного трения.  [c.10]

При подборе квалитетов часто используют опыт проектирования и эксплуатации аналогичных изделий. В машинах и приборах при высоких требованиях к ограничению разброса зазоров и натягов посадок применяют для отверстий 1Т7 и для валов /Гб (класс точности 2) при особо высоких требованиях к точности соединений (узлы подшипников качения высокой точности в приборах) применяют для отверстий /Гб и для валов /Г5 (класс точности 1) при менее высоких требованиях к ограничению разброса зазоров и натягов для упрощения технологии можно применять /Г8 (класс точности 2а) в соединениях, допускающих большие зазоры и для облегчения сборки, применяют /Г9—/Г12 (классы точности За, 4, 5) допуски свободных размеров назначаются по /Г11 (в приборах) и грубее. Учитывая повышенные требования к качеству машин и приборов, рекомендуется шире применять /7 6—/Г8.  [c.75]


Расчетный метод дает более обоснованные результаты. Однако неисчерпаемое разнообразие соединений препятствует созданию универсального метода расчета посадок. Пока разработаны методы расчета натягов в неподвижных посадках и в соединении подшипников качения с валами, а также для вычисления зазоров в подшипниках скольжения.  [c.77]

Какие зазоры и натяги необходимы и допустимы для соединения колец подшипников качения с валами и корпусами относительно большие или относительно малые  [c.89]

Какой радиальный зазор в подшипниках качения называют начальным, посадочным, рабочим .  [c.90]

Особое направление заключается в компенсации износа, осуществляемой периодически или автоматически. К числу узлов с периодической компенсацией принадлежат подшипники скольжения с осевым или радиальным регулированием зазора (с коническими несущими или посадочными поверхностями, с периодически подтягиваемыми вкладышами). Другие примеры — осевая подтяжка подшипников качения (радиальноупорных и конических) и регулирование зазора в прямолинейных направляющих с помощью переставных клиньев и планок.  [c.31]

Примером ошибочной установки является фиксация вала в двух подшипниках качения одновременно (рис. 252, а). Если корпус подшипников выполнен из материала с иным коэффициентом линейного расширения, чем ва а также если вал и корпус имеют различные рабочие температуры, то в узле возникает зазор или натяг, вызывающий защемление подшипников. Неизбежные погрешности выполнения осевых размеров соединения, в свою очередь, могут вызвать появление зазоров или натягов.  [c.379]

В узлах, состоящих из нескольких концентричных деталей, необходимо сокращать число центрирующих поверхностей, так как наслоение производственных неточностей на каждом центрирующем поясе уменьшает точность центрирования в целом. В конструкций 17 подшипник Качения установлен на двух промежуточных втулках. Центрирующих поверхностей четыре (не считая зазоров между телами качения и беговыми дорожками). При сокращении числа центрирующих поверхностей (18) до двух точность центрирования возрастает примерно вдвое.  [c.499]

Сочетать в одной установке подшипники качения и скольжения, как правило, не рекомендуется, так как радиальные зазоры в "подшипниках скольжения значительно больше, чем в подшипниках качения, поэтому такая установка обычно приводит к перегрузке и перекосу подшипников качения и недогрузке подшипников скольжения.  [c.529]

Цапфы валов для подшипников качения (рис, 16,3) характеризуются меньшей длиной, чем цапфы для подшипников скольжения. Исключение составляют конструкции с двумя подшипниками качения в опоре. Как правило, цапфы для подшипников качения выполняют цилиндрическими, В редких случаях применяют конические цапфы с малой конусностью — для регулирования зазоров в подшипниках упругим деформированием колец. Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец  [c.318]

Для рассматриваемого примера х = 5,5 мкм, г = х оо — = 5,5/6 0,91. Пользуясь таблицей значений интегралов функций Ф (г) (см. приложение), находим Ф (г) == 0,3186. Вероятность получения натягов в соединении 0,5 + 0,3186 = 0,8186, или 81,86 %. Вероятность получения зазоров (незаштрихованная площадь под кривой распределения) 1 —0,8186 = 0,1814, или 18,14 %. Вероятные натяг —5,5 — За = —23,5 мкм и зазор —5,5 + Зст = +12,5 мкм практически являются предельными. Этот расчет приближенный, так как в нем не учтены возможности смещения центра группирования относительно середины поля допуска вследствие систематических погрешностей. При высоких требованиях к точности центрирования, а также при больших (особенно ударных) нагрузках и вибрациях назначают посадки с большим средним натягом, т. е. Н/п, Н/т. Чем чаще требуется разборка (сборка) узла и чем она сложнее и опаснее в смысле повреждения других деталей соединения (особенно подшипников качения), тем меньше должен быть натяг в соединении, т. е. следует назначать переходные посадки Н/к, H/j .  [c.221]

Выбор посадок колец подшипников качения на вал и в корпус зависит от значения, направления и характера нагрузок, типа II размеров подшипника, условий эксплуатации, метода регулирования зазоров и условий сборки. Различают местное, циркуляционное и колебательное нагружения неподвижных колец местная нагрузка воспринимается ограниченным участком дорожки качения и передается на ограниченный участок корпуса циркуляционная нагрузка воспринимается всей окружностью дорожки качения колебательная нагрузка распределяется на определенный участок кольца.  [c.321]


МАЯТНИКОВЫЕ КОЛЕБАНИЯ. Для роторов, опирающих ) на подшипники качения с большим зазором или на подшипники скольжения, работающие в режиме сухого трения или скудной смазки, осуществлены маятниковые колебания ротора в поле  [c.33]

Подшипник качения маркируют путем нанесения на торец кольца ряда цифр и букв, условно обозначающих внутренний диаметр подшипника, его серию, тип конструктивную разновидность и в некоторых случаях ряд дополнительных сведений, характеризующих специальные условия изготовления данного подшипника, например класса точности, радиального зазора, осевой игры, момента трения, шумности и др.  [c.229]

На рис. 7.26 изображен одноступенчатый насос двустороннего входа. Двустороннее рабочее колесо 1 в силу симметрии разгружено от осевого усилия. Подвод насоса по-луспирального типа, отвод спиральный. Разъем корпуса насоса продольный (горизонтальный), причем нагнетательный и всасывающий трубопроводы подключены к нижней части корпуса 3. Это обеспечивает возможность вскрытия, осмотра, ремонта, замены отдельных деталей и всего ротора без демонтажа трубопроводов и отсоединения электродвигателя. Уплотняющий зазор рабочего колеса выполнен между сменными уплотняющими кольцами, закрепленными в корпусе насоса и на рабочем колесе. Уплотнение лабиринтное двухщелевое. Вал насоса защищен от износа сменными втулками, закрепленными на валу резьбовым соединением. Эти же втулки крепят рабочее колесо в осевом направлении. Сальники, уплотняющие подвод насоса, имеют кольца гидравлического затвора 2. Жидкость подводится к ним под давлением из отвода насоса по трубкам. Радиальная нагрузка ротора воспринимается подшипниками скольжения 4. Смазка подшипников кольцевая. В нижней части корпусов подшипников имеются камеры, через которые протака ет охлаждающая вода. Для фиксации вала в осевом направлении и восприятия осевого усилия, которое может возникнуть при неодинаковом изготовлении или износе правого и левоге уплотнений рабочего колеса, в левом подшипнике имеются радиально-упорные шарикоподшипники 5. Наружные кольца этих подшипников необходимо устанавливать с большими радиальными зазорами. В противном случае малые зазоры подшипников качения обеепечили бы кон-  [c.185]

Для контроля радиального зазора подшипников качения Среднеазиатский филиал ГОСНИТИ и ЦОКТБ разработал устройство, схема которого показана на рис. 4.8.  [c.112]

Подшипники качения. В зависимости от зазоров подшипники качения разделяются на две группы радиальные шариковые и роликовые с нерегулируемыми зазорами, радиально-упорные с регулир-уемыми зазорами. Для первой группы характерны начальный, посадочный и рабочий зазоры, а для второй — регулировочный (посадочный) и рабочий зазоры. Учитывая, что подшипники сопрягаются с посадочным местом с гарантированным натягом хотя бы вдного сочленения, посадочный зазор уменьшают относительно начального на 0,5—0,7 величины действительного натЯга при посадке на вал и на 0,5—0,6 натяга при посадке в корпус.  [c.180]

Под начальным радиальным зазором подшипника качения подразумевают свободное пространство между телами качения и кольцами в диаметральном направлении, которое имеет подшипник в несмонтиро-  [c.13]

Во всех конструктивных вариантах размер S получен при отливке крышки на заготовительной операции. Размер /г обычно ВХОДИ сосзавляющим размером размерной цепи, онределякмцей осевой зазор в комплекзе вала с подшипниками качения. Размер Н везде габаритный.  [c.319]

Кольца подшипников качения изготовляют по ширине Ь (рис. 7.18, а) с довольно широкими отклонениями. Так, при диаметре отверстия свыше 30 до 50 мм допуск на ширину составляет 0,12 мм, а при диаметре свыше, 50 до 80 мм -— 0,15 мм. Размер е вала выполняют примерно с такой же точностью. Толщину пружинного кольца выполняют с д(л1уском 0,12 мм. Зазор между упорным кольцом и цодшипни-ком  [c.93]

Жесткость опор на подшипниках качения может быть значительно повышена при создании предварительного натяга. В обычно отрегулированных подшипниках относительное осевое смещение колец под действием внешней осевой силы складывается из свободного перемещения в пределах имеющегося в подшипнике осевого зазора и упругой деформации в местах контакта тел качения с кольцами подшипника. Сущность предЕ арительного натяга заключается в том, что пару подшипников предварительно нагружают осевой силой. Эта сила не только устраняет осевой зазор в парном комплекте подшипников, но и  [c.100]

Для смазки подшипников качения применяются консистентные пли жидкие минеральные смазки. Смазка не только уменьшает трепне на рабочих поверхностях между тел 1ми качения и сепаратором, но и способствует теплоотводу, повышает амортизирующую способность подшипника при ударных и вибр, ционпых нагрузках, заполняет зазоры в уплотнениях и улучшает работу узла, предохраняя подшипник от загрязнений и влаги, ум шьшает шумность подшипника, предохраняет его от коррозии.  [c.128]

Более совершенны системы с автоматической компенсацией износа (самопритирающиеся конические пробковые краны, торцовые и манжетные уплотнения, узлы подшипников качения с пружинным натягом, системы гидравлической компенсации зазоров в рычажных механизмах и т. д.).  [c.31]

Известное приближение к принципу безызносной работы представляют подшипники скольжения с гидродинамической смазкой. При непрерывной подаче масла и наличии клиновидности масляного зазора, обусловливающей нагнетание масла в нагруженную область, в таких подшипниках на устойчивых режимах работы металлические поверхности полностью разделяются масляной пленкой, что обеспечивает теоретически безызносную работу узла. Их долговечность не зависит (как у подшипников качения) ни от нагрузки, ни от скорости вращения (числа циклов нагружения). Уязвимым местом подшипников скольжения является нарушение жидкостной смазки на нестационарных режимах, особенно в периоды пуска и установки, когда из- за снижения скорости вращения нагнетание масла прекращается и между цапфой и подшипником возникает металлический контакт.  [c.32]


Поверхности беговых дорожек должны бьпь закалены до твердости ИКС 62-65 и обработаны по 1-му классу точности с параметрами шероховатости Ка не пьпис 0,04 мкм стандартные для подшипников качения радиальные и торцовые зазоры должны бьпь выдержаны.  [c.534]

Простейшими примерами объектов оптимизации в области деталей машин могут служить стержни, т. е. балки, колонны, шатуны (профиль и размеры сечения вдоль длины, расположение опор) резьбов )1е детали (профиль, форма стержня и гайки) зубчатые передачи (типы, параметры за[(.епления, передаточные числа, конструктивные соотногпения) подшипники качения (типы, профиль дорожек качения, конструктивные соотношения, натяги, зазоры) подшипники скольжения (геометрические соотношения, формы рас-точек, зазоры, вязкость масел) и др. Основные критерии масса, сопротивление усталости, технологичность, а для передач — также КПД, бесшумность, теплостойкость, дол го вечность.  [c.55]

Применение ЭВМ к расчетам подшипников качения. Вследствие простых и правильных форм тел качения ЭВМ делает возможными И эффективными точные расчеты распределения сил между телами качения, эквивалентных нагрузок, упругих перемещений при сложном на1ружении, разных скоростях, разных зазорах, перекосах осей, погрешностей изготоиления.  [c.358]

К числу оптимизационных задач по подшипникам качения относятся оптимизация зазора, формы профилей, соотношения радиусов профилей и шариков, стрелки выпуклости бомбинированных роликов. Состояние системы САПР подшипников качения позволяет автоматическое проектирование включая графику серийных подшипников.  [c.358]

На рис. 13.13 изображен упорный шариковый подшипник, предназначенный для восприятия односторонней осевой нагрузки. Кольцо с внутренним диаметром df, монтируемое на вал и имеющее зазор с корпусом, называется тугим, кольцо с внутренним диаметром с1 , предназначенное для посадки в корпус и имеющее зазор с валом, называется свободным. Упорный подшипник может быть самоуста-навливающимся за счет сферической поверх1юсти базового торца. Упорные подшипники могут быть роликовыми. Для восприятия осевой нагрузки в обоих направлениях существуют двойные упорные подшипники качения.  [c.231]


Смотреть страницы где упоминается термин Зазоры подшипников качения : [c.346]    [c.371]    [c.375]    [c.395]    [c.273]    [c.17]    [c.197]    [c.178]    [c.315]    [c.231]    [c.237]    [c.420]    [c.313]   
Справочник по ремонту котлов и вспомогательного котельного оборудования (1981) -- [ c.291 , c.292 ]



ПОИСК



БАЛЫ Посадки подшипников качения — Натяги и зазоры

Двухроторные насосы на подшипниках качения без гидравличе— ской компенсации торцовых зазоров

Двухроторные насосы на подшипниках качения с гидравлической компенсацией зазоров

Зазор

Зазор радиальный в подшипниках качения

Зазоры в зацеплении в подшипниках качения — Регулировка

Зазоры в зацеплении зубчатых радиальные начальные в подшипниках качения — Величины

Зазоры в между торцами подшипников качения

Зазоры в при посадках подшипников качения

Зазоры в регулировочные в подшипниках качения радиально-упорных

Зазоры в резьбах при посадках подшипников качения

Зазоры в резьбах радиальные начальные в подшипниках качения

Зазоры в резьбах регулировочные в подшипниках качения упорных

Зазоры и предварительные натяги в подшипниках качения

Зазоры осевые.в подшипниках качения

Зазоры подшипниках

Зазоры — Контроль в подшипниках качения

Зазоры — Определение ь подшипниках качения

Кольца подшипников качения и зазоры

Начальный зазор в подшипниках качени

Начальный зазор в подшипниках качения

Подшипники качения

Подшипники качения Зазоры и натяги

Подшипники качения радиально-упорные — Установка с регулированием осевого зазора

Подшипники качения радиальные радиальные с короткими цилиндрическими роликами — Зазоры

Подшипники качения радиальные шариковые — Зазоры радиальные

Подшипники качения способы регулирования зазора

Подшипники качения шариковые — Зазоры начальные

Подшипники качения — Отклонения формы предельны с зазором

Посадочный зазор в подшипниках качения

Пятно контакта и боковой зазор в червячной передаче с глобоидным червяРегулировка подшипников качения

Рабочий зазор в подшипниках качения

Радиальные зазоры и осевая игра в подшипниках качения



© 2025 Mash-xxl.info Реклама на сайте