Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб пластин гипотезы Кирхгофа

Теория изгиба пластин и оболочек, основана на некоторых упрощающих предположениях. Первым из них является предположение о неизменности нормали или так называемая гипотеза Кирхгофа. Принимается, что точки, расположенные на некоторой прямой, нормальной к срединной поверхности до деформации, после деформации снова образуют прямую, нормальную к деформированной поверхности. Такое предположение, как и гипотеза плоских сечений бруса, выражает тот факт, что угловыми деформациями оболочек можно пренебречь по сравнению с угловыми перемещениями. Это приемлемо в той мере, в какой толщина пластины мала по сравнению с другими ее размерами.  [c.302]


Если прогибы W пластины малы по сравнению с ее толщиной, то можно построить приближенную техническую теорию изгиба пластин, основанную на следующих гипотезах Кирхгофа.  [c.186]

В таком виде условия для свободного края в свое время пытался формулировать Пуассон. Однако позже, в 1850 г., Кирхгоф показал, что для данной приближенной теории изгиба пластин, основанной на использовании гипотезы прямых нормалей, в общем случае нельзя одновременно удовлетворить двум последним условиям (6.16). Как и в предыдущих случаях опирания. для свободного края возможно удовлетворить не трем, а только двум силовым условиям, соответствующим только двум независимым перемещениям па кромке. Так, на кромке у — Ь ими являются прогиб w (х) у=ь и угол поворота  [c.158]

Принимая для пластины гипотезу нормальных элементов Кирхгофа, положенную в основу технической теории изгиба упругих. пластин (см. 12.4), мы представим поле скоростей деформаций в пластине следующим образом  [c.639]

В теории изгиба балок для сведения трехмерной задачи о деформированном состоянии бруса к одномерной (в функции осевой координаты) принята гипотеза плоских сечений. В теории изгиба пластин для упрощения задач приняты следующие гипотезы. Гипотеза неизменной нормали — первая кинематическая гипотеза Кирхгофа, которая состоит в том, что материальные точки пластины, расположенные на одной нормали к срединной плоскости So, после деформирования остаются на нормали к поверхности SS, в которую переходит, плоскость So. Следовательно, материальные точки при деформировании перемещаются так, что все время остаются на одной прямой, перпендикулярной So. Вторая кинематическая гипотеза Кирхгофа состоит в том, что все точки, лежащие на одной нормали, получают одинаковое перемещение в направлении оси Oz, т. е. если  [c.366]

Последнее уравнение повторяет уже полученное нами уравнение (16.65) изгиба жестких пластин. Из полученных выше формул для Xj , Туг и следует, что в пределах точности гипотез Кирхгофа Тхг, Ту,, распределяются по толщине по закону квадратной параболы, а — по закону кубической параболы  [c.395]

Установим соотношения упругости при изгибе многослойных композитов [6]. Будем считать, что слои материала идеально связаны между собой (отсутствует проскальзывание слоев). Классическая теория пластин, основанная на гипотезах Кирхгофа—Лява, дает следующие выражения для деформаций (см. 4.2)  [c.28]

В основе технической теории пластин и оболочек, используемой при расчете тонкостенных элементов конструкций, лежат два важных упрощающих допущения — гипотезы Кирхгофа. С этими допущениями мы познакомимся на примере задачи об осесимметричном изгибе круглой пластины постоянной толщины — одной из самых простых задач теории пластин.  [c.53]


Классические вариационные принципы в линейной теории изгиба пластин, основанной на гипотезах Кирхгофа  [c.395]

Вариационные принципы для задачи растяжения и изгиба пластины с учетом больших перемещений при использовании гипотез Кирхгофа  [c.408]

Рассмотрим цилиндрический изгиб шла Стин ы жестким штампом, радиус основания которого равен R (рис. 5.1). Будем решать задачу на основе уравнений теории пластин, построенной на гипотезах Кирхгофа. Если допустить, что существует зона плотного прилегания (—Ь, Ь) пластины и штампа, то в этой зоне изгибающий момент пластины равен  [c.212]

Приведем некоторые основные положения классической теории изгиба тонких однородных изотропных пластин постоянной толщины, основанной на гипотезах Кирхгофа — Лява. Более подробные сведения по этому вопросу можно найти в монографиях [14, 179, 185, 229].  [c.247]

Она основана на совокупности допущений, называемых обычно гипотезами Кирхгофа-Лява прямолинейный элемент, нормальный к срединной поверхности до деформации и после нее остается прямолинейным и нормальным к срединной поверхности и не изменяет своей длины. Деформации предполагаются малыми и не учитываются деформации срединной поверхности при изгибе пластины. Распределение смещений в пластине при этих предположениях имеет вид [1.13, 5.1] (рис. 5.1)  [c.185]

В качестве примера рассмотрим воздействие вертикальной нагрузки от воздушного судна на аэродромное покрытие, лежащее на упругом основании, и оценим степень учета динамики воздействия по отношению к статическому нагружению. Как было показано выше, работа плит монолитного и сборного цементобетонных покрытий при воздействии вертикальной самолетной нагрузки хорошо описывается известным дифференциальным уравнением изгиба изотропной пластины в предположении справедливости гипотез Кирхгофа-Лява для упругого основания [44]  [c.173]

Влияние деформации сдвига и инерции вращения. Выше были использованы уравнения и граничные условия классической теории изгиба плит, основанной на гипотезе Кирхгофа-Лява. Предпосылки этой теории оказываются несправедливыми для высокочастотных колебаний, когда длина полуволн соответствующих форм колебаний сопоставима с толщиной пластины. Дифференциальные уравнения изгибных  [c.401]

Теория осесимметричной деформации цилиндрических оболочек основана на гипотезах Кирхгофа — Лява, аналогичных гипотезам, используемым в теории изгиба пластин.  [c.309]

Диссипация энергии при изгибе многослойных композитов. Будем считать, что слои композита идеально связаны между собой, при этом выполняются гипотезы Кирхгофа—Лява классической теории пластин, приводящие к формулам (8.71) для деформаций пакета слоев.  [c.259]

Рассмотрим цилиндрический изгиб пластины моментами и предположим, что распределение линейных деформаций такое же, как получаемое на основе гипотез Кирхгофа—Лява, т. е.  [c.23]

Дискретный подход с учетом гипотезы Кирхгофа эффективно использовался при решении задач изгиба пластин [12.60, 12.611, осесимметричных оболочек [12.591 и тонких оболочек общего вида 112.581.  [c.383]

Обобщая гипотезы изгиба стержней на случай пластины, придем к известным гипотезам Кирхгофа — Лява материальная нормаль к серединной поверхности пластинки, поворачиваясь, остается нормальной к ней в деформированном состоянии (кинематическая гипотеза), и напряженное состояние преимущественно является плоским.  [c.109]

Замечания о других элементах высших порядков. Наиболее широко конечноэлементные модели высших порядков использовались в связи с приложениями к задачам изгиба тонких пластин и оболочек. При использовании теорий, основанных на гипотезах Кирхгофа — Лява, деформации элемента пластины или оболочки описываются полем перемещений точек срединной поверхности и первыми производными этого поля. Вследствие этого для непрерывности всего поля перемещений требуется не только непрерывность перемещений срединной поверхности, но и непрерывность первых частных производных Это в совокупности с требованием, что модель должна обеспечивать возможность описания случая постоянных кривизн ), приводит к значительным трудностям построения соответственных конечных элементов ). Эти трудности — один из многочисленных примеров того, как упрощающие предположения (например, гипотезы Кирхгофа — Лява, предположение о несжимаемости и т. д.), предназначавшиеся первоначально для того, чтобы облегчить применения теории, существенно усложняют построение удобных конечноэлементных моделей. Практически очень часто при использовании более фундаментальной (неупрощенной) теории проще строить приемлемые конечноэлементные модели.  [c.164]


Срединная поверхность остается после изгиба нейтральной. Подобные гипотезы были положены в основу теории пластин впервые Г. Кирхгофом [2.113] (1860).  [c.118]

Классическая теория. В основе теории лежит совокупность допущений, называемая гипотезами Кирхгофа — Лява прямолинейный элемент, нормальный к срединной поверхности до деформации, остается прямым и нормальным к срединной поверхности, не меняя своей длины. Деформации предполагаются малыми. В пластине реализуется обобщенное плоское напряженное состояние, в силу предположения о том, что сгзз пренебрежимо малы. Существенные компоненты тензоров деформаций и напряжений и (а, Р = 1,2) линейно изменяются по толщине. Деформацию срединной поверхности при изгибе пластин не учитывают.  [c.157]

Рассмотрим изгиб пластины произвольного очертания под действием поперечной распределенной нагрузки q. Будем считать, что пластина подчиняется гипотезам Кирхгофа и для ее прогибов справедливо уравнение Софи Жермен. Введем компенсирующие нагрузи p( ,Ti) и распределенные моменты на границе пластины Г (рис.5.1). Если пластина занимает область S с границей Г, то под действием равномерно распределенной поперечной нагрузки q она получит прогиб, который согласно МГЭ запишется в следующем виде  [c.129]

В целом можно сказать, что книга Л. Г. Доннелла представляет интерес своим отбором. задач для обсуждения, характером обсуждения решений задач, общим взглядом на проблему расчета упругих стержней, пластин и оболочек. -Разумеется, представленный материал не в состоянии охватить всю проблему. Редактор считает необходимым предъявить автору претензии в. сшлсле ссылок на литературные источники и во многих других отношениях. В частности, невозможно, например, согласиться - с попыткой автора называть совокупность гипотез теории изгиба прямых, стержней Бернулли — Эйлера гипотезой Кирхгофа — Лява, невозможно принять такое же утверждение в теории пластин. Такие вольности могут иметь очень грустные последствия. Преследуемая автором краткость выражения достигает иные, печальные цели. Поэтому в ряде случаев редактор вынужден был вносить в текст неизбежные коррективы.  [c.6]

Граничные условия Кирхгофа ). Методы рассмотрения связанных с прогибом If граничных условий при изгибе, которые были изложены в 2.7 применительно к балкам, могут быть, как правило, без дополнительного большого изменения или затруднения примеиены к задачам пластин или оболочек. Однако дополнительно к сказанному в 4.1 имеется еще одна сторона, поскольку изложенные там теории пластин и оболочек, основанные на гипотезе Кирхгофа, значительно отличаются от случая поперечно нагруженных балок. Как видно из рис. 4.1, на каждой стороне малого элемента -имеется трц силовых фактора обусловленные лзгибом силы и моменты, например F , Мя а Мщ, на стороне, нормальной к оси х, в то время как для поперечно нагруженной балки имеется только два силовых фактора F и Ж. Но и уравнение (2.4) для балок и соответствующее уравнение (4.18) для пластин имеют четвертый порядок, й полное решение для них содержит только необходимое ч сло постоянных интегрирования для балок и произвольных функций (заданных по всей длине 1 рая пластины) интегрирований для пластин, что позволяет удовлетворить дйум условия а каждом конце или крае.  [c.242]

При обычном применении классических теорий изгиба упругих балок и пластин делаются два важных типа пренебрежений -а) пренебрегается нелинейными эффектами конечных деформаций, т. е. эффектами изменения геометрии исследуемого объекта при развитии деформации б) вводится гипотеза Кирхгофа (т е. пренебрегается поперечными напряжениями и деформациями с соответствующим упрощением граничных условий) и игнорируются условия локального на 1ряженного состояния в окрестности сосредоточенных нагрузок и т. д.  [c.288]

Первый подход был основан на разработке математических моделей работы покрытий в рамках уточненных (без гипотез Кирхгофа-Лява) неклассических теорий изгиба многослойных пластин на упругом основании. В этом направлении работали В.К. Присяжнюк, B. . Сипетов и др. Их работы базировались на исследованиях з еных киевской школы, где под руководством В.Г. Пискунова и А.О. Рассказова получила развитие теория изгиба пластин, ориентированная на решение инженерных задач. К этому направлению следует отнести и исследования, в которых приняты за основу другие неклассические теории изгиба, в частности исследования Э.И. Григолюка [67,68]. Такой подход, безусловно, дает возможность рассмотреть работу всех слоев покрытия с з етом деформаций сдвига и обжатия. Однако, как показывает практический опыт, при решении задач о работе конструкций с учетом реального расположения швов в слоях покрытия возникают определенные сложности.  [c.30]

Поскольку основным уравнением рассматриваемой задачи является уравнение (20.2), для решения задата разрушения могут быть с успехом использованы все имеющиеся в литературе решения об изгибе пластин при гипотезах Кирхгофа — Лява[80, 90]. Для этого достаточно воспользоваться расчетными формулами (6.5), (6.15), (6.22) совместно с (20.3), (20.4).  [c.119]

Во всех ранее рассмотренных в этой главе задачах изгиба пластины уравнения равновесия выводились статическим путем и везде использовались кинематические гипотезы Кирхгофа. При отказе от этих гипотез вывод уравнений равновесия и силовых грапичпых условий удобно осуществлять, используя вариационный принцип Лагранжа.  [c.139]

Из результатов, полученных Кирхгофом в механике твердых деформируемых тел, отметим слёдующие обоснование теории пластин двумя гипотезами (ныне носящими имя автора), вывод формулы для потенциальной энергии деформации пластины, энергетический вывод уравнения изгиба пластины, приведение в соответствие числа граничных условий и порядка дифференциального уравнения в теории пластин, исследование колебаний пластин и стержней переменного сечения, построение геоме рически нелинейной теории изгиба пластин, вывод нелинейных уравненнй равновесия для пространственного гибкого стержня, формулирование динамической аналогии (сопоставление уравнения равновесия стержня и уравнения движения твердого тела относительно неподвижной точки), экспериментальное определение величины коэффициента Пуассона с целью выявления правильной точки зрения в дискуссии о числе независимых упругих постоянных в изотропном теле.  [c.47]


ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Смотреть страницы где упоминается термин Изгиб пластин гипотезы Кирхгофа : [c.16]    [c.60]    [c.403]    [c.280]    [c.378]    [c.7]   
Теория упругости и пластичности (2002) -- [ c.121 ]



ПОИСК



Вариационные принципы для задачи растяжения и изгиба пластины с учетом больших перемещений прн использовании гипотез Кирхгофа

Гипотеза

Гипотеза Кирхгофа

Изгиб гипотезы

Кирхгофа

Классические вариационные принципы в линейной теории изгиба пластин, основанной на гипотезах Кирхгофа

Пластины изгиб



© 2025 Mash-xxl.info Реклама на сайте