Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионные испытания электрохимические

Электрохимические методы. Большинство процессов коррозии металлов имеет электрохимическую природу, поэтому электрохимические методы играют большую роль в технике коррозионных испытаний. Обычно примято измерять потенциалы и снимать катодные н анодные поляризационные кривые. Метод измерения электродных потенциалов описан в гл. II.  [c.342]

Коррозионные испытания металлов в напряженном состоянии. Как известно, коррозия металла в напряженном состоянии носит специфический характер и отличается как от чисто механического, так и от чисто электрохимического его разрушения. Характерным видом разрушения металла при постоянных растягивающих напряжениях является коррозионное растрескивание металла. Разработано много методов испытаний на устойчивость  [c.347]


Коррозия — это исходящее с поверхности разрушение объектов вследствие химической или электрохимической реакции с дефектоскопическим материалом. При коррозионном испытании определяется, оказывает ли материал на выбранные объекты коррозионное воздействие. Контролю подвергаются все материалы набора (пенетрант, очиститель, проявитель).  [c.158]

Были проведены коррозионные испытания многослойных покрытий в пищевых средах Коррозионные испытания показали одинаковую стойкость образцов, покрытых двухслойным покрытием электрохимическим никелем (20 25 мкм) с последующим электрохимическим хромом (0,4—О 5 мкм) н таких же образцов, покрытых электрохимическим никелем (20 25 мкм) и химическим хромом (0,1 мкм). Описанный способ хромирования рекомендуется вместо электрохимического способа хромирования для покрытия мелких деталей и детален сложного профиля по предварительно нанесенному слою никеля  [c.92]

ЭЛЕКТРОХИМИЧЕСКИЕ КОРРОЗИОННЫЕ ИСПЫТАНИЯ  [c.133]

Электрохимические коррозионные испытания металла котлов часто являются наиболее приемлемыми и по оперативности получения информации, и по достаточной надежности определения коррози-  [c.133]

Как правило, в основе коррозионных испытаний металла котлов в стендовых условиях при повышенных температурах и давлениях также лежат электрохимические методы. Однако подобного род коррозионные испытания имеют ряд отличий от описанных в 5.1.  [c.145]

Полученные результаты электрохимических измерений находятся в соответствии с данными коррозионных испытаний после выдержки в растворе хлорида натрия шов сварных соединений, выполненных электродами МР-3 и АНО-4, подвергался коррозии менее интенсивно, чем основной металл, тогда как шов сварных соединений, выполненных электродами УОНИ 13/45 и АЙ0-7, наоборот, подвергался более интенсивной коррозии по сравнению с основным металлом.  [c.224]

Косвенные лабораторные испытания проводят для определения возможной коррозионной стойкости металлов при изменении некоторых их физических или химических свойств, если известна связь между этими свойствами и коррозионной стойкостью металлов в природных или эксплуатационных условиях. Например, известны экспериментальные данные о корреляции между толщиной, пористостью и стойкостью электрохимических покрытий к атмосферным явлениям. Поэтому нецелесообразно проводить длительные коррозионные испытания. Имея данные по накопленным за длительное время испытаниям, достаточно определить толщину и пористость покрытий, и если покрытие не отвечает предъявляемым требованиям, можно считать его непригодным. К этой группе можно отнести и испытания, которые проводят в стандартных условиях, и по полученным результатам судить о реальных коррозионных процессах. Например для оценки склонности металла к межкристаллитной коррозии проводят испытания, которые невозможно воспроизвести в условиях эксплуатации.  [c.91]


Электрохимические методы коррозионных испытаний  [c.30]

Для объяснения сущности коррозионных процессов, протекающих при высоких температурах, только химических исследований недостаточно. Для вскрытия механизма этих процессов наряду с обычными коррозионными испытаниями, необходимы электрохимические исследования. Однако существующие методы измерения потенциалов или исследования кинетики электродных процессов в водных растворах не применимы при высоких температурах и давлениях. Принципиально возможны два пути в разработке методики электрохимических измерений при высоких температурах и давлениях.  [c.57]

Для количественной оценки коррозионной стойкости паяных соединеннй можно использовать электрохимический метод ускоренных коррозионных испытаний, схема установки которого приведена на рис. 10.  [c.322]

Тенденция различных металлов образовывать гальванические пары и вероятная направленность электрохимического действия в морской воде для некоторых используемых в промышленности металлов и сплавов показаны в табл. 17.8 [19, стр. 32], [20, стр. 86]. В идеале желательно проводить испытания в натурных условиях, однако в случае, если результатов таких испытаний нет, достаточно достоверно оценить возможные электрохимические эффекты можно с помощью табл. 17.8. Чем далее удалены друг от друга разнородные металлы в этом гальваническом ряду, тем более серьезной может быть проблема электрохимической коррозии. Пары материалов внутри любой заключенной в квадратные скобки группы совсем (или почти- совсем) гальванически не взаимодействуют. Следует, однако, отметить, что в приведенном в табл. 17.8 гальваническом ряду встречаются и исключения, так что всегда, когда это возможно, следует проводить коррозионные испытания применяемых материалов в натурных условиях.  [c.594]

Метод 26 — показатель 34. Используя емкостно-омический метод, определяют эффект последействия ПИНС . Для этих измерений используется видоизмененная ячейка два электрода (стержня из Ст. 45) запрессованы в оргстекло рабочей поверхностью электродов служит их торцевая часть площадью 0,5 см2 с расстоянием между электродами 2 см. Рабочие электроды выдерживают под пленкой ингибированного продукта в течение 24 ч (48 ч, 96 ч), после чего сама пленка и адсорбционный слой ингибиторов удаляются промывкой пластинок последовательно в бензине, бензоле и спирте. Затем проводят коррозионные и электрохимические испытания образцов. Во всех случаях под эффектом последействия ингибитора (ЭПИ) понимают относительный эффект изменения поверхностных свойств металла, отнесенный к такому же контрольному, чистому металлу [18—20].  [c.99]

Поэтому рассматриваемые в настоящей монографии теоретические вопросы, относящиеся к механизму протекания электрохимических реакций в тонких слоях электролитов, конвективной диффузии, адсорбции поверхностно-активных веществ, влиянию составляющих сплавов и атмосферы, а также роли омического сопротивления и поляризации представляют не только самостоятельный научный интерес, но и имеют принципиальное значение для разработки противокоррозионной защиты и методов ускоренных коррозионных испытаний металлов.  [c.5]

Рассмотрена номенклатура металлического оборудования из коррозионно-стойких сталей и титана, неметаллических материалов. Большое внимание уделено технологии защиты стальных и железобетонных аппаратов футеровочными и полимерными покрытиями. Перспективные методы электрохимической защиты рассмотрены главным образом на примерах анодной защиты, нашедшей в химической промышленности наибольшее применение. В меньшей степени рассмотрены вопросы использования ингибиторов коррозии. Этот вид защиты неразрывно связан с особенностями технологии соответствующих производств, требованиями к химическому составу продукции н рабочих сред, поэтому он будет рассматриваться в книгах, посвященных конкретным отраслям химической промышленности. В эту книгу включены лишь справочные данные о таких общераспространенных процессах, как ингибирование при травлении металлов и ингибиторная защита оборудования в периоды консервации и транспортировки. Описанию способов защиты оборудования предпослана глава о методах коррозионных испытаний металлических и неметаллических материалов и изделий.  [c.4]


Испытание качества покрытий также включает в себя и определение их антикоррозионных свойств. Основные методы коррозионных испытаний были рассмотрены в гл. III. Другие методы (механические испытания, снятие электрических и оптических характеристик, электрохимические измерения, испытания с применением радиоактивных изотопов, определение состава коррозионных слоев при помощи электронной дифракции или электронного микрозонда) применяются в особых случаях. Оценка качества покрытий в значительной мере зависит от правильности метода исследования, а также от продолжительности испытаний.  [c.233]

Для количественной оценки коррозионной стойкости паяных соединений можно использовать электрохимический метод ускоренных коррозионных испытаний [33]. Схема установки приведена на рис. 134.  [c.255]

На фиг. 5, построенной в координатах потенциал — расстояние от поверхности, приведены кривые, показывающие изменение коррозионных и электрохимических свойств нержавеющих сталей по толщине азотированного слоя, построенные по электродным потенциалам, измеренным через 1 час от начала испытаний.  [c.124]

Рис. 10. Схема установки для y кopeнны коррозионных испытаний электрохимическим методом Рис. 10. Схема установки для y кopeнны коррозионных испытаний электрохимическим методом
Ускоренный электрохимический метод испытания на точечную коррозию, предложенный Бреннертом и усовершенствованный Г. В. Акимовым и Г. Б. Кларк, состоит в том, что образец коррозионностойкой стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал (рис. 355). При достижении некоторого значения потенциала (потенциала пробивания) защитная пленка на образце разрушается в одной или нескольких точках, вследствие чего значение электродного потенциала образца уменьшается. Наблюдается хорошее соответствие результатов сравнительных коррозионных испытаний хромистых и хромоникелевых сталей на точечную коррозию с данными, полученными методом определения потенциала пробивания.  [c.463]

Объемный показатель обычно измеряется в см /(см .ч ). Электрохимические методы коррозионных испытаний основаны на определении скорости коррозии в токовых единицах, получаемых при снятии анодных и катодных пол изационных кривых. Если коррозия протекает по электрохимическому механизму, то. зная уравнение реакции, скорость коррозии, выраженную в единицах плотности тока (обычно мА/см ) при помощи закона Фарадея можно перевести в массовый показатель скорости коррозии.  [c.7]

Коррозионные испытания в климатических условиях средней полосы СССР в весенний и осенне-зимний периоды показали, что на образцах с покрытием из щелочного раствора 3 или с электрохимическим никелем через 96 ч наблюдаются первые очаги коррозии через 300 ч — значительная коррозия основного металла, а через 650 ч — сплошной слой продуктов коррозии основного металла на всех образцах Поверхность же образцов, никелированных в кислых растворах 1 и 2, после испытаний в течение 650 ч сохранила первоначальный вид Через ЮСЮ ч испытаний на образцах с покрытием толщиной 10 мкм и более очаги коррозии не обнаружены Покрытия, термообработанные в условиях вакуума (не имевщие окисной пленки) обнаружили пониженную коррозион иую стойкость  [c.12]

Электролитическое никелевое покрытие с 9 %-иым содержанием Р по защитным свойствам можно сравнить с химическими покрытиями из раствора с гликолевой кислотой Электрохимические никелевые покрытия с 3 %-ным содержанием фосфора хуже защищают основной металл но все же несколько лучше, чем электроосажденный никель При увеличении продолжительности коррозионных испытаний все покрытия тускнеют и становятсн пятнистыми Блеск сохраняется дольше на химических покрытиях, полученных из кислых растворов с гликолевой или янтарной кислотой  [c.13]

Основное назначение стеклокерампческой пленки на алюмпнид-ной поверхности лопатки компрессора — защитить ее от электрохимической коррозии, которая протекает при пониженных температурах. Электродный потенциал покрытия ДифА-СФ имеет более отрицательное значение по сравнению с потенциалом материала лопатки, поэтому само покрытие будет являться протектором в случае появления забоины на лопатке компрессора. Характер разрушения поверхностных слоев лопаток с покрытием ДифА-СФ при коррозионных испытаниях подтверждает анодный характер покрытия.  [c.167]

Сплавы ниобия. Методика коррозионных испытаний ниобиевых сплавов такая же, как и ванадиевых. Однако при испытаниях ниобиевых сплавов возникла следующая проблема. Не для всех сплавов вследствие определенных технологических трудностей было получено одинаковое структурное состояние. Так, нелегированный ниобий и сплавы Nb—Ti, Nb—Zr и Nb-Та исследовались в деформированном и рекристаллизованном (отожженом) состояниях, а сплавы Nb—Мо, Nb—W и Nb—V — в литом f отожженом состояниях. Однако полученные результаты коррозионны испытаний, несмотря на различие в структуре сплавов, сравнимы по еле дующим причинам. Коррозионная стойкость металлов и сплавов (гомогенных) определяется их электрохимическим потенциалом, который зависит от состава сплава и является структурно-нечувствительной характеристикой (т.е. не зависит от размера зерна, наличия текстуры и тд.).  [c.67]


Еще одна методика электрохимического испытания, получившего наименование ЕС-испытание, опубликована Сауером и Баско в 1966 г. Вероятно, это последнее из наиболее ускоренных коррозионных испытаний качества изделий с никель-хромовыми покрытиями, наносимыми либо на сталь, либо на цинковый сплав. Электродный потенциал испытуемых образцов поддерживался потенциостатически равным 0,3 В. Образец являлся анодом по отношению к каломельному электроду сравнения в растворе, содержащем нитрат и хлорид натрия, азотную кислоту и воду. Анодный ток подавался циклически 1 мин — подача тока 2 мин — отключение. Максимальная плотность тока не превышала 3,3 мА/см . На практике такое значение плотности тока является предельным для изделии, имеющих никель-хро-мовые покрытия.  [c.164]

Фирмой Westinghouse были проведены электрохимические исследования и коррозионные испытания в эксплуатационных условиях ряда фер-ритиых нержавеющих сталей, применяемых в опреснительных установках [233]. Результаты показали, что многие высокочистые нержавеющие стали обладают хорошей стойкостью в деаэрированной морской воде  [c.199]

Существуют различные показатели коррозии (табл. 3), которые используются с учетом вида коррозии, характера повреждений и специфических требований данной отрасли промышленности к металлу. Скорость общей равномерной коррозии металлов и сплавов (химической и электрохимической) поддается оценке путем наблюдения за ростом и разрушением пленок из продуктов коррозии (гравиметрические, оптические, электрические методы испытаний) (рис. 5). Используются весовой (/(в) и глубинный (П) показатели скорости коррозии н реже — объемно-газовый показатель (см. табл. 3). Для оценки скорости развития локальных коррозионных повреждений применяют разнообразные методы испытаний. Широко используется механический показатель, а также электрический и резонансный показатели. Существуют и другие показатели. Оценивают, например, время до появления выраженной трещины в напряженном металле, контактирующем с агрессивной средой. Проводятся замеры контактных токов между различными металлами в жидких электролитах с целью определения скорости контактной коррозии. Широко применяются способы микрографического обследования образцов после коррозионных испытаний с промером глубины питтин-гов.  [c.125]

В данном параграфе описываются методы электрохимических и коррозионных испытаний металлов по результатам работ А. В. Бя-лобжесского и В. Д. Валькова [11,14].  [c.88]

При ускоренных методах коррозионных испытаний целесообразно использовать возможность ускорения электрохимических реакций, обусловливающих коррозионный процесс, агрессивными компонентами или деполяризаторами. При испытании металлов при полном погружении с целью увеличения скорости катодного процесг а можно вводить перекись водорода ли иные деполяризаторы. При атмосферных ускоренных испытаниях можно ускорить процесс введением в атмосферу агрессивных компонентов. При выборе одного из них необходимо учитывать, содержится ли тот или иной компонент в атмосфере.  [c.50]

Данные, приведенные в табл. 78 и 7Й, подтверждают, что особенно склонны к развитию контактной (щелевой) коррозии соединения алюминия и его сплавов, паяные оловом, свинцом и их сплавами, ферритные стали и чугун, паянные серебром, серебрянными припоями, свинцом, соединения меди, паянные свинцовыми припоями ПСр2,5 и ПСрЗ, имеющими слабое химическое сродство с паяемым металлом и неблагоприятное соотношение электрохимических потенциалов в условиях коррозионных испытаний. Данные по коррозионной стойкости паяных соединений в основном подтверждают такой вывод  [c.207]

Приведенные данные позволяют сделать также важные практические выводы в плане коррозионной защиты. Во-первых, скорость коррозии латуни, определенная гравиметрически по убыли в массе образца, не отражает истинного размера и опасности коррозионных разрушений, так как при этом не учитывается масса восстановленной меди. Поэтому гравиметрические коррозионные испытания обязательно должны сочетаться с измерениями коэффициента селективного растворения по всем компонентам сплава. Во-вторых, недостаточная глубина катодной защиты может интенсифицировать обесцинкование, вместо того чтобы подавить его. Трудности контроля защитного потенциала в различных зонах теплообменного оборудования, необходимость поддержания достаточно высокой плотности катодного тока, опасность нарушения сплошности пассивирующих оксидных пленок при катодной поляризаций приводят к тому, что электрохимическая катодная защита латуней, бронз и других сплавов, склонных к СР, применяется крайне ограничено. По этим же причинам практически не используется протекторная защита латуни [245].  [c.191]

Пример № 1. Эффективность РМАС в качестве ингибиторов коррозии металлов в аэрированных водных системах показана коррозионными испытаниями. Испытания проводили в электрохимической ячейке на стальных электродах с синтетической и очень жесткой водопроводной водой при рН7 в условиях непрерывной аэрации.  [c.10]

Таким образом, изучение электрохимического поведения Т1 — 0,2% Рб в растворах хлоридов при телшературе 160°С показало, что сплав обладает высокой коррозионной стойкостью в условиях щели. Лабораторные коррозионные испытания подтвердили от-сутствие признаков щелевой коррозии сплава Т1 — 0,2% Рй при температурах раствора до 160° включительно. Сплав 4200> был рекомендован для защиты от щелевой коррозии фланцевых соединений титановых аппаратов I и II корпусов выпарной установки. С целью экономии дефицитного и дорогостоящего металла нами было предложено произвести наплавку сплава 4200 на при-валочные поверхности фланцев. Наплавка производилась электродами из сплава (листа или проволоки) в виде концентрических колец толщиной 2 мм. Расход сплава на 1фланец составил 1,5 кг. Длительный опыт эксплуатации аппаратов с защищенными фланцами при температуре кипения раствора 135—140° показал полное отсутствие щелевой коррозии.  [c.52]

После электрохимической очистки сточной воды условия испытания изменились pH воды-6—7, присутствие хлоратов — до 0,3 г/л, следы активного хлора, температура 60°С. Коррозионные испытания в данных условиях показали, что высокой стойкостью обладают титан, сталь Х18Н10Т и все полимерные материалы. Углеродистая сталь подвергается неравномерной коррозии со скоростью 0,66 г/м час.  [c.54]

Фундаментальные электрохимические исследования МКК сделали возможным создание новых ускоренных методов определения склонности нержавеющих сталей к этому виду локальной коррозии [48—52] и П03В0.ПИЛП сформулировать основные принципы разработки растворов для ускоренных коррозионных испытаний сталей на МКК [50, 51, 53].  [c.59]

PsA Микроскопическое исследование. Дальнейшим развитием ви- зуального метода исследования коррозии металлов является микроскопическое исследование. Так же как и в предыдущих случаях, микроскопическое исследование можно проводить после и во время проведения коррозионных испытаний. Микроскопическое исследование позволяет прежде всего подробно изучать избирательный и локальный характер коррозии межкристаллитную коррозию, межкристаллитное и внутрикристаллитное коррозионное растрескивание и корроз1ионную усталость, структурную и экстрагивную коррозию. Микроскопическое наблюдение коррозионных процессов во времени позволяет получить ценные данные о начале и характере развития коррозионных разрушений. Для наблюдения коррозионного процесса под микроскопом [1] поверхность образца — в виде шлифа или подготовленную другим способом — помещают в ванночку так, чтобы рабочая поверхность была повернута к объективу микроскопа. После чего ее наводят на фокус, наливают заранее отмеренное количество коррозионной среды и начинают наблюдение. Микроскопические наблюдения можно производить одновременно с электрохимическими, о чем более подробно сказано ниже в гл.ЛУ-  [c.17]


Есть целый ряд случаев, когда характер подготовки поверхности имеет существенное значение. К ним можно отнести электрохимические измерения, изучение коррозионного растрескивания, влияния термообработки, химического состава, технологических факторов и др. При проведении этих измерений точность данных возрастает по мере увеличения чистоты и однородности исследуемой поверхностп. Значительно упрощается выбор способа подготовки поверхности металла при прозе-дении испытаний в средах, з которых металл корродирует равномерно и относительно интенсивно. В этом случае вследствие быстрого стравливания поверхностного слоя характер предварительной подготовки не оказывает существенного влияния на результаты испытаний. При проведении опытов для получения ориентировочных данных о практическом поведении металла состояние поверхности образцов необходимо приближать к тому, какое имеется у эксплуатируемых изделий. Для ряда коррозионных испытаний характер подготовки поверхности можно выбирать исходя из формы и размера образцов чем меньше и сложнее форма образцов, тем более тщательной  [c.57]

Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз 3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе f5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13).  [c.64]


Смотреть страницы где упоминается термин Коррозионные испытания электрохимические : [c.134]    [c.86]    [c.214]    [c.24]    [c.146]    [c.46]    [c.122]    [c.177]    [c.37]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.94 ]



ПОИСК



МЕТОДЫ ИССЛЕДОВАНИЯ КОРРОЗИИ И КОРРОЗИОННЫЕ ИСПЫТАНИЯ Электрохимические методы испытаний аустенитных сталей на стойкость к межкристаллитной коррозии

Методы коррозионных и электрохимических исследований при высоких температурах и давлениях Статические методы (автоклавные испытания)

Определение скорости коррозии электрохимическими методами (испытание с защищенным анодом или катодом на моделях коррозионных элементов)

ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ Измерение электродных потенциалов

Электрохимические исследования при коррозионно-усталостных испытаниях

Электрохимические методы коррозионных испытаний

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте