Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимические методы коррозионных испытаний

Электрохимические методы коррозионных испытаний  [c.30]

ЭЛЕКТРОХИМИЧЕСКИЙ МЕТОД КОРРОЗИОННЫХ ИСПЫТАНИЙ -  [c.187]

Рассмотрена номенклатура металлического оборудования из коррозионно-стойких сталей и титана, неметаллических материалов. Большое внимание уделено технологии защиты стальных и железобетонных аппаратов футеровочными и полимерными покрытиями. Перспективные методы электрохимической защиты рассмотрены главным образом на примерах анодной защиты, нашедшей в химической промышленности наибольшее применение. В меньшей степени рассмотрены вопросы использования ингибиторов коррозии. Этот вид защиты неразрывно связан с особенностями технологии соответствующих производств, требованиями к химическому составу продукции н рабочих сред, поэтому он будет рассматриваться в книгах, посвященных конкретным отраслям химической промышленности. В эту книгу включены лишь справочные данные о таких общераспространенных процессах, как ингибирование при травлении металлов и ингибиторная защита оборудования в периоды консервации и транспортировки. Описанию способов защиты оборудования предпослана глава о методах коррозионных испытаний металлических и неметаллических материалов и изделий.  [c.4]


Испытание качества покрытий также включает в себя и определение их антикоррозионных свойств. Основные методы коррозионных испытаний были рассмотрены в гл. III. Другие методы (механические испытания, снятие электрических и оптических характеристик, электрохимические измерения, испытания с применением радиоактивных изотопов, определение состава коррозионных слоев при помощи электронной дифракции или электронного микрозонда) применяются в особых случаях. Оценка качества покрытий в значительной мере зависит от правильности метода исследования, а также от продолжительности испытаний.  [c.233]

При ускоренных методах коррозионных испытаний целесообразно использовать возможность ускорения электрохимических реакций, обусловливающих коррозионный процесс, агрессивными компонентами или деполяризаторами. При испытании металлов при полном погружении с целью увеличения скорости катодного процесса можно вводить перекись водорода или иные деполяризаторы. При атмосферных ускоренных испытаниях можно ускорить процесс введением в атмосферу агрессивных компонентов. При выборе одного из них необходимо учитывать, содержится ли тот или иной компонент в атмосфере. Поэтому при ускоренных испытаниях изделий, предназначенных для эксплуатации в атмосфере морского воздуха, желательно в камеру ввести частички хлористого натрия, распределив их в атмосфере в виде сухого аэрозоля или тумана. Для имитации условий промышленной атмосферы желательно в конденсационную камеру или аппарат переменного погружения ввести сернистый газ. Скорость коррозионного процесса можно при этом увеличить в десятки, а иногда и в сотни раз.  [c.11]

ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ  [c.119]

По величине измеряемого электродного потенциала можно судить и о характере коррозионного процесса и установить, таким образом, какая из электрохимических реакций определяет скорость коррозии. Это очень важно при выборе (обязательно с учетом контролирующего фактора) ускоренного метода коррозионных испытаний.  [c.126]

Исходя из электрохимической теории межкристаллитной коррозии нержавеющих сталей, представляется возможным обосновать ускоренные методы коррозионных испытаний. Если коррозия обусловлена электрохимической неоднородностью поверхности, то любой реактив, пригодный для быстрого определения коррозии, должен действовать на границы зерен, обедненные хромом, ответственные за межкристаллитную коррозию, оставляя в пассивном состоянии сами зерна. Если это условие не будет соблюдаться, то начнут корродировать зерна и межкристаллитная коррозия перейдет в общую.  [c.246]

Книга является вторым изданием учебника для техникумов, переработанным и дополненным (первое вышло в 1977 г.). Состоит из двух частей. В первой части рассмотрены теория и основные виды коррозии, коррозия важнейших металлов и сплавов, а также оборудования электрохимических цехов, методы коррозионных испытаний и защиты от коррозии, коррозионно-стойкие металлы и неметаллические материалы. Вторая часть книги посвящена гальваностегии — приведена классификация покрытий, изложены основы электроосаждения металлов, описаны условия и закономерности нанесения покрытий из цветных металлов и контроль качества покрытий. Приведены также сведения об оборудовании гальванических цехов, очистке сточных вод и технике безопасности.  [c.2]


Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процессов, работа коррозионного элемента, пассивность и потенциостатический метод исследований, рассмотрены в работах № 5—13. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, грунтовая коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, а также некоторые стандартные методы коррозионных испытаний иллюстрируются работами № 14—22.  [c.64]

Для определения скорости коррозионного процесса можно применять различные электрохимические методы. Для испытания лакокрасочных покрытий эти методы недостаточно разработаны и поэтому не нашли еще широкого применения.  [c.353]

Во Всесоюзном научно-исследовательском институте железнодорожного транспорта влияние трещии на коррозионную стойкость железобетонных конструкций изучали в лабораторных условиях электрохимическими методами, путем испытания в гидростате и коррозионной камере, на стендах и на эксплуатируемых конструкциях.  [c.53]

Электрохимические методы. Большинство процессов коррозии металлов имеет электрохимическую природу, поэтому электрохимические методы играют большую роль в технике коррозионных испытаний. Обычно примято измерять потенциалы и снимать катодные н анодные поляризационные кривые. Метод измерения электродных потенциалов описан в гл. II.  [c.342]

Коррозионные испытания металлов в напряженном состоянии. Как известно, коррозия металла в напряженном состоянии носит специфический характер и отличается как от чисто механического, так и от чисто электрохимического его разрушения. Характерным видом разрушения металла при постоянных растягивающих напряжениях является коррозионное растрескивание металла. Разработано много методов испытаний на устойчивость  [c.347]

Как правило, в основе коррозионных испытаний металла котлов в стендовых условиях при повышенных температурах и давлениях также лежат электрохимические методы. Однако подобного род коррозионные испытания имеют ряд отличий от описанных в 5.1.  [c.145]

Для объяснения сущности коррозионных процессов, протекающих при высоких температурах, только химических исследований недостаточно. Для вскрытия механизма этих процессов наряду с обычными коррозионными испытаниями, необходимы электрохимические исследования. Однако существующие методы измерения потенциалов или исследования кинетики электродных процессов в водных растворах не применимы при высоких температурах и давлениях. Принципиально возможны два пути в разработке методики электрохимических измерений при высоких температурах и давлениях.  [c.57]

Для количественной оценки коррозионной стойкости паяных соединеннй можно использовать электрохимический метод ускоренных коррозионных испытаний, схема установки которого приведена на рис. 10.  [c.322]

Во второй главе приведены стандартные и специально разработанные методики выполнения исследований. К их числу относятся методы макро- и мик-ро- металло- и фрактографического анализа, испытания на растяжение и ударный изгиб в условиях отрицательных температур, электрохимические исследования и испытания на малоцикловую коррозионную усталость.  [c.7]

В отличие от трибохимических процессов, интенсифицируемых температурой и характерных для режима испытаний на машине СМЦ-2, выделение водорода при электрохимическом катодном коррозионном процессе деполяризации протекает в условиях относительно холодного контакта при легких режимах трения, характерных для метода ТЭМ-2В, и определяется в основном содержанием в масле воды.  [c.55]

Поэтому рассматриваемые в настоящей монографии теоретические вопросы, относящиеся к механизму протекания электрохимических реакций в тонких слоях электролитов, конвективной диффузии, адсорбции поверхностно-активных веществ, влиянию составляющих сплавов и атмосферы, а также роли омического сопротивления и поляризации представляют не только самостоятельный научный интерес, но и имеют принципиальное значение для разработки противокоррозионной защиты и методов ускоренных коррозионных испытаний металлов.  [c.5]

Наиболее значительные успехи в разработке электрохимических методов испытаний на устойчивость к межкристаллитной коррозии достигнуты применительно к испытаниям коррозионно-стойких сталей и сплавов на железоникелевой основе [48,49). Поэтому их рассмотрение будет проведено на примере этих материалов.  [c.58]

Для количественной оценки коррозионной стойкости паяных соединений можно использовать электрохимический метод ускоренных коррозионных испытаний [33]. Схема установки приведена на рис. 134.  [c.255]

Электрохимический метод исследования коррозионной стойкости сварных соединений состоит в определении электродных потенциалов, которые дают представление о термодинамической устойчивости металла испытываемой зоны, зависимости его коррозионной стойкости от свойств среды и пр. Поляризационные кривые показывают зависимость величины потенциала от плотности пропускаемого через образец тока и позволяют судить о степени пассивного состояния металла образца, его коррозионной стойкости, о необходимой величине защитного тока при электрохимической защите и т.д. Испытания могут проводиться на образцах из соответствующих зон сварных соединений, на имитационных образцах и непосредственно на сварном соединении.  [c.172]


Выбор метода испытаний зависит от цели исследования. Так, для изучения механизма коррозионных процессов широко применяют электрохимические методы. Для исследований, носящих прикладной характер (выбор наиболее коррозионно-стойкого металла для данных условий эксплуатации, исследование поведения металла в определенных условиях эксплуатации, выбор способа защиты), часто применяют испытания в специальных аппаратах и установках, В последних методах испытаний, которые обязательно проводят как сравнительные, основными показателями коррозии являются внешний вид образцов, время появления первого коррозионного очага, число коррозионных центров, глубинный, весовой, объемный, механический и другие показатели.  [c.144]

Выбор метода испытания зависит от цели исследования. Так, для изучения механизма коррозионных процессов широко применяют электрохимические методы. Для исследований носящих прикладной характер (вы-  [c.182]

Следует отметить, что даже при использовании одного из классических методов исследования — электрохимического — для проведения коррозионных испытаний в растворах электролита можно получить подробную информацию (косвенно и непосредственно — по результатам травления) о структуре и свойствах различных гетерофазных материалов, содержащих хотя бы одну электропроводящую или полупроводящую фазу.  [c.75]

Коррозионные испытания предварительно активированных электрохимическими методами титановых образцов убедительно подтверждают, что скорости растворения титана резко возрастают в присутствии даже весьма больших концентраций ионов Т1(1У) (см. табл. 2).  [c.52]

Объемный показатель обычно измеряется в см /(см .ч ). Электрохимические методы коррозионных испытаний основаны на определении скорости коррозии в токовых единицах, получаемых при снятии анодных и катодных пол изационных кривых. Если коррозия протекает по электрохимическому механизму, то. зная уравнение реакции, скорость коррозии, выраженную в единицах плотности тока (обычно мА/см ) при помощи закона Фарадея можно перевести в массовый показатель скорости коррозии.  [c.7]

Экономайзеры, коррозия под действием воды 542 Электроды для запальных свечей, выбор материала 848—849 Электрохимические методы коррозионных испытаний 1027—1037,. 1080, 1094—1095 Эрозия при кавитащ и см. Кавитационная эрозия Эруковая кислота 825 Этан, действие на медь 717 Этаноламин, действие на сплавы меди с никелем 214 на чугун 99 Этиленгликоль, действие на магний и его сплавы 144—146 Этиловый спирт, действие иа оловО 339 на сплавы магния 164 на сплаиы меди с оловом 224 на хромоникелевую сталь 51 Эфир уксуснобутиловый, действие иа хромоиикелевую сталь 51  [c.1252]

В данном параграфе описываются методы электрохимических и коррозионных испытаний металлов по результатам работ А. В. Бя-лобжесского и В. Д. Валькова [11,14].  [c.88]

При ускоренных методах коррозионных испытаний целесообразно использовать возможность ускорения электрохимических реакций, обусловливающих коррозионный процесс, агрессивными компонентами или деполяризаторами. При испытании металлов при полном погружении с целью увеличения скорости катодного процесг а можно вводить перекись водорода ли иные деполяризаторы. При атмосферных ускоренных испытаниях можно ускорить процесс введением в атмосферу агрессивных компонентов. При выборе одного из них необходимо учитывать, содержится ли тот или иной компонент в атмосфере.  [c.50]

Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз 3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе f5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13).  [c.64]

Коррозионная стойкость хромоникелевых и высокохрсялистых сталей, паянных свинцовым припоем, была исследована по ГОСТу 6032-58, а также электрохимическими методами. Все испытанные образцы не имели признаков МКК. В то же время в сварных образцах, например из стали Х27, отчетливо вадны резко выраженные разрушения по границам зерен, что свидетельствует о щюте-кании МКК. По мере удаления от шва характер разрушения ослабляется и за зоной термического влияния МКК в основнсяа металле полностью отсутствует. 27  [c.27]

Ускоренный электрохимический метод испытания на точечную коррозию, предложенный Бреннертом и усовершенствованный Г. В. Акимовым и Г. Б. Кларк, состоит в том, что образец коррозионностойкой стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал (рис. 355). При достижении некоторого значения потенциала (потенциала пробивания) защитная пленка на образце разрушается в одной или нескольких точках, вследствие чего значение электродного потенциала образца уменьшается. Наблюдается хорошее соответствие результатов сравнительных коррозионных испытаний хромистых и хромоникелевых сталей на точечную коррозию с данными, полученными методом определения потенциала пробивания.  [c.463]

Существуют различные показатели коррозии (табл. 3), которые используются с учетом вида коррозии, характера повреждений и специфических требований данной отрасли промышленности к металлу. Скорость общей равномерной коррозии металлов и сплавов (химической и электрохимической) поддается оценке путем наблюдения за ростом и разрушением пленок из продуктов коррозии (гравиметрические, оптические, электрические методы испытаний) (рис. 5). Используются весовой (/(в) и глубинный (П) показатели скорости коррозии н реже — объемно-газовый показатель (см. табл. 3). Для оценки скорости развития локальных коррозионных повреждений применяют разнообразные методы испытаний. Широко используется механический показатель, а также электрический и резонансный показатели. Существуют и другие показатели. Оценивают, например, время до появления выраженной трещины в напряженном металле, контактирующем с агрессивной средой. Проводятся замеры контактных токов между различными металлами в жидких электролитах с целью определения скорости контактной коррозии. Широко применяются способы микрографического обследования образцов после коррозионных испытаний с промером глубины питтин-гов.  [c.125]


Рис. 10. Схема установки для y кopeнны коррозионных испытаний электрохимическим методом Рис. 10. Схема установки для y кopeнны коррозионных испытаний электрохимическим методом
Если стоит задача выявления МКК при коррозионном обследовании действующего оборудования, то для выявления межкри-сталлитных поражений применяют ультразвуковые, рентгеновские, радиоизотопные и другие приборы неразрушающего контроля. При необходимости проводят вырезку и металлографический контроль образцов. На практике, однако, чаще всего возникают задачи иного рода, требующие достаточно быстрой оценки качества отдельных партий металла перед их использованием для изготовления аппаратуры. Обычно это бывает связано с выявлением возможных отклонений от установленной технологии изготовле1 ия и сварки сплавов. Сюда же примыкают задачи обнаружения неблагоприятных структурных изменений металла образцов или аппаратов в нормальных эксплуатационных условиях или при их нарушениях (перегревы и т. п.). Во всех этих случаях металл может приобрести повышенную склонность к МКК. Для выявления склонности к МКК применяют две группы методов химические и электрохимические. Химические методы широко распространены в мировой практике, изучены в течение многих десятков лет и стандартизованы. Электрохимические методы, позволяющие резко ускорить испытания, основаны на снятии электрохимических характеристик при анодной поляризации металла. Они к настоящему времени прошли опытную проверку и, безусловно, являются перспективными.  [c.50]

Фундаментальные электрохимические исследования МКК сделали возможным создание новых ускоренных методов определения склонности нержавеющих сталей к этому виду локальной коррозии [48—52] и П03В0.ПИЛП сформулировать основные принципы разработки растворов для ускоренных коррозионных испытаний сталей на МКК [50, 51, 53].  [c.59]

PsA Микроскопическое исследование. Дальнейшим развитием ви- зуального метода исследования коррозии металлов является микроскопическое исследование. Так же как и в предыдущих случаях, микроскопическое исследование можно проводить после и во время проведения коррозионных испытаний. Микроскопическое исследование позволяет прежде всего подробно изучать избирательный и локальный характер коррозии межкристаллитную коррозию, межкристаллитное и внутрикристаллитное коррозионное растрескивание и корроз1ионную усталость, структурную и экстрагивную коррозию. Микроскопическое наблюдение коррозионных процессов во времени позволяет получить ценные данные о начале и характере развития коррозионных разрушений. Для наблюдения коррозионного процесса под микроскопом [1] поверхность образца — в виде шлифа или подготовленную другим способом — помещают в ванночку так, чтобы рабочая поверхность была повернута к объективу микроскопа. После чего ее наводят на фокус, наливают заранее отмеренное количество коррозионной среды и начинают наблюдение. Микроскопические наблюдения можно производить одновременно с электрохимическими, о чем более подробно сказано ниже в гл.ЛУ-  [c.17]

Успехи, достигнутые при исследовании коррозионно-электрохимического поведения пассивирующихся металлов и сплавов, позволили сформулировать основные принципы подбора растворов для ускоренных коррозионных испытаний сталей на склонность к МКК [150, 156] и сделать определенные практические рекомендации [150, 157, 158 . Так, с помощью потенциостатических исследований в работе [157] были определены условия ускоренного (48 вместо 144 ч по методу В) коррозионного испытания стали 0Х23Н28МЗДЗТ на склонность к МКК.  [c.55]

Склонность к точечной коррозии определяют электрохимическим методом, определяя потенциал пробивания, и для сравнения — по времени появления первого очага коррозии и количеству прокорродировавших участков после коррозионного испытания в растворе РеС1з.  [c.125]

Электрохимические методы исследования и выявления склонности коррозионностойких сталей к межкристаллитной коррозии в последние годы получают все больщее распространение. Преимуществом этих методов по сравнению с методами ГОСТ 6032—75 является возможность широкого варьирования коррозионных сред, в том числе проведения испытаний в промышленных средах, возможность строгого поддержания фкор, а также сокращение продолжительности испытания [34, 45, 132, 151, 176].  [c.18]

Коррозионную стойкость электроосажденного покры-тйя можно оценивать также по значению водостойкости и солестойкости, однако эти испытания более продолжительны. Для определения водостойкости образцы для испытания готовят так же, как и при определении пористости электрохимическим методом. Образцы погружают в стеклянный стакан с дистиллированной водой, наполненный на /з его высоты. Уровень воды в стакане в течение опыта должен оставаться постоянным. Через 24, 72, 120 и 240 ч выдержки визуально с помощью лупы оценивают состояние покрытий. Для этого пластины извлекают из стакана, высушивают фильтровальной бумагой и фиксируют внешний вид покрытия (наличие пузырей, их размер, отслаивацие), цвет, блеск, состояние металла под подлол<кой (в двух местах отделяют от подложки пленку на участке размером 1 см ).  [c.65]

Результаты коррозионных испытаний цинковых, медных, серебряных и никелевых покрытий, пассивированных в поле высоковольтного разряда, показали преимущество этого метода по сравнению с другими известными методами (погружением, электрохимическим пасйивированием, пассивированием в ультразвуковом поле) [4]. Однако из-за сложности аппаратурного решения указанный процесс не нашел в настоящее время широкого применения.  [c.454]


Смотреть страницы где упоминается термин Электрохимические методы коррозионных испытаний : [c.134]    [c.142]    [c.553]    [c.224]   
Смотреть главы в:

Защита металлов от коррозии лакокрасочными покрытиями  -> Электрохимические методы коррозионных испытаний



ПОИСК



Коррозионные испытания электрохимические

МЕТОДЫ ИССЛЕДОВАНИЯ КОРРОЗИИ И КОРРОЗИОННЫЕ ИСПЫТАНИЯ Электрохимические методы испытаний аустенитных сталей на стойкость к межкристаллитной коррозии

Метод испытаний

Метод коррозионный

Методы коррозионных и электрохимических исследований при высоких температурах и давлениях Статические методы (автоклавные испытания)

Методы коррозионных испытани

Методы коррозионных испытаний

Определение скорости коррозии электрохимическими методами (испытание с защищенным анодом или катодом на моделях коррозионных элементов)

ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ Измерение электродных потенциалов

Электрохимические методы

Электрохимические методы испытаний

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте