Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ

Все рассуждения велись до сих пор в предположении, что края диска свободны от действия внешних усилий. Эго предположение обычно не соответствует действительности. Посадка диска на вал выполняется в горячем состоянии или с помощью гидравлического пресса с таким натягом, чтобы деформация отверстия диска, вызванная центробежными усилиями, всегда была меньше, чем обратная ей по знаку, деформация при посадке диска, т. е. чтобы в рабочем состоянии диск плотно сидел на вале. Наружный край диска обычно снабжается ободом для закрепления в нем лопаток турбины, при вращении которого возникают дополнительные центробежные усилия, передающиеся на диск. Таким образом, по наружному и внутреннему краю диска обычно действуют некоторые равномерно распределенные растягивающие или сжимающие усилия. Вызванные этими усилиями напряжения в диске могут быть вычислены по формулам, выведенным для расчета толстостенных цилиндров (формулы (25.9) 144). Складывая напряжения по формулам (25.9), а также (29.9) и (29.10), получаем возможность построить полную картину распределения напряжений во вращающемся диске.  [c.498]


Пример. Длительная прочность вращающегося диска. Рассмотрим, следуя В. И. Розенблюму и Л. М. Качанову, вязкое разрушение диска, вращающегося с постоянной угловой скоростью со (рис. 103). Диск имеет переменную толщину, которую в начальный момент времени обозначим через ho (г). В этот же момент времени внутренний и наружный радиусы обозначим через и Соответствующие размеры диска в произвольный момент времени t обозначим а, Ь и h. При этом будем считать, что а = а (t), Ь = Ь (t), h = h (t). При решении задачи будем предполагать, что материал диска несжимаем, мгновенными деформациями можно пренебречь, нормальные окружные и радиальные напряжения по толщине диска постоянны.  [c.188]

ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ  [c.542]

Значительный интерес представляет задача о напряжениях и деформациях в быстро вращающихся валах и дисках. Высокие скорости вращения валов паровых турбин обусловливают появление в валах и дисках значительных центробежных усилий. Вызванные ими напряжения распределяются симметрично относительно оси вращения диска.  [c.681]

Формулы (3.16) — (3.19), выведенные для тонких дисков, иногда применяют для расчета длинных сплошных или полых вращающихся барабанов. Распределение напряжений в длинном барабане, строго говоря, отличается от распределения напряжений в тонком диске. Если в диске напряженное состояние — плоское (0 . = 0), то в барабане оно объемное (о т О). Относительная осевая деформация в диске переменна по радиусу, а в барабане — постоянна (поперечные сечения в длинном барабане остаются плоскими).  [c.87]

Диск вращающийся в условиях ползучести — Деформации 332  [c.388]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]


Этот ЛИСТ 7 прикреплен к поршню 5 цилиндра 4 гидроуправления тормозом. Цилиндр 4 укреплен неподвижно на оси / и не может вращаться или перемещаться в осевом направлении. Рабочая жидкость подается в цилиндр 4 через отверстие 3. При движении поршня 5 гофрированный лист 7 перемещается вместе с ним и прижимается к тормозной колодке 8 из фрикционного материала, имеющей также гофрированную поверхность и прикрепленной к вращающемуся диску 9 тормозного устройства. Охлаждающая жидкость подается через трубку 2 из теплообменника в кольцевые каналы /0 между гофрированным диском и опорным кольцом 6 и отводится через такую же трубку, расположенную симметрично относительно трубки 2. Внутренняя поверхность гофрированного листа 7 имеет большое количество канавок, что существенно увеличивает поверхность охлаждения. Выступающие части диска 7 опираются на поверхность кольца 6, что уменьшает деформации при замыкании тормоза. При применении упругих дисков  [c.234]

Следствием этих деформаций является появление вертикальных (по оси У) и горизонтальных (по оси X) линейных смещений центров колес и связанных с ними дополнительных углов поворота Аср вокруг оси 2, а также поворот дисков зубчатых колес в плоскостях 2 — V и 2 — X. Поворот вращающихся дисков сопровождается появлением гироскопических моментов, влияющих на колебательный процесс.  [c.237]

Изучение изгибных колебаний вращающихся валов начинается с рассмотрения движения сечения, в котором прикреплена деталь (диск). Это движение происходит вследствие деформаций вала и вследствие его вращения.  [c.112]

На рис. 3.40 приведена конструкция с вращающимися аксиально-подвижными узлами. Она отличается от предыдущей тем, что в нижнем 1 и верхнем 7 привалочных фланцах неподвижно закреплены графитовые кольца 6 и 10. Стальные кольца 5 н 9, имеющие подвижность в аксиальном направлении, закреплены в диске 4, который вращается вместе с валом. Уплотнение вала по газу для натриевых насосов так же, как и торцовые уплотнения для водяных ГЦН проектируют, принимая во внимание прежде всего коэффициент нагруженности к. При уменьшении коэффициента повышается сопротивляемость термической деформации, однако увеличивается опасность раскрытия стыка уплотняющих колец.  [c.88]

О профилировании неравномерно нагретого вращающегося диска переменной толщины в условиях ползучести по заданному закону изменения напряжений или деформаций по радиусу см. [15].  [c.305]

В развитие формул 39 определим относительные деформации гг и вг неравномерно нагретого вращающегося диска.  [c.217]

Для повышения чувствительности балансировочного устройства брусья должны быть изготовлены из твердой стали и прикреплены к тяжелому бетонному основанию, чтобы упругая деформация установки была как можно меньше. Такая система горизонтальных брусьев представляет собой простейший вид статической балансировочной машины. Для турбомашин, вращающиеся массы которых имеют форму диска, статической уравновешенности бывает достаточно для обеспечения спокойной работы.  [c.100]

Торцовые уплотнения имеют много конструктивных типов, появившихся, во-первых, в связи с постепенным совершенствованием конструкций, во-вторых, в связи с многообразными условиями эксплуатации. Конструкции уплотнений начнем рассматривать с простейшего типа (рис. 69, а), в котором уплотняющим элементом является торец бурта вала ], контактирующий с торцом корпуса резервуара и уплотняющий внутреннюю полость резервуара. Практически такое уплотнение удовлетворительно работать не может по следующим причинам 1) между уплотненными поверхностями может быть большой зазор из-за грубой обработки, волнистости и перекоса торцов 2) стык может раскрываться за счет осевых перемещений и деформаций вала и корпуса 3) износ торцов не компенсируется автоматически осевым смещением вала 4) невозможно выбрать материалы трущейся пары, обеспечивающие длительную работу 5) невозможно обработать торцы с требуемой высокой точностью. Следовательно, рационально спроектированное торцовое уплотнение должно быть отдельным узлом машины (рис. 69, б), в котором основные уплотняющие элементы (диски 5 и 6) изготовлены с требуемой степенью точности из наиболее износостойких материалов. Конструкция должна обеспечивать самоустанавливаемость и постоянный контакт основных уплотняющих элементов за счет нажимного элемента 3 (пружинного или сильфонного типа). Поскольку диск 5 подвижен в осевом направлении (плавает), а диск 6 должен само-устанавливаться в перпендикулярное валу положение, появляются два вспомогательных эластичных уплотнения 4 а 7. Для удобства монтажа все детали, кроме диска 6, устанавливаются в головке уплотнения 2. В зависимости От условий эксплуатации головка уплотнения может быть вращающейся, как показано на рис. 69, б, или неподвижной (рис. 69, в), расположенной внутри резервуара (рис. 69, б, б) или вне резервуара (рис. 69, г, 5). Наиболее распространены торцовые уплотнения с вращающейся головкой, расположенной внутри резервуара. Такие уплотнения применяют, когда давление внутри резервуара превышает наружное давление и жидкость может вытекать по торцу уплотнения в направлении к центру. При этом центробежные силы препятствуют утечке под действием перепада давления.  [c.143]


Возмущение, вносимое отверстием в напряженное поле вращающегося диска, работающего в условиях упругих деформаций, имеет местный характер, если размеры отверстия достаточно малы по сравнению с размерами диска.  [c.124]

Датчики крутящего момента аналогичны датчикам силы и также основаны на методе упругого уравновешивания измеряемой величины. Они содержат упругий элемент, снабженный преобразователем угла его закручивания в электрический сигнал и токосъемником для передачи сигнала с вращающегося вала (рис. 24). Угол закручивания измеряют либо по деформации кручения, либо по углу поворота двух сечений упругого элемента, находящихся на определенном расстоянии друг от друга. Первый метод широко распространен, что является следствием стремления унифицировать методы измерений и аппаратуру. Тензорезистивные преобразователи позволяют достичь этого благодаря их универсальности. Однако сигнал наиболее отработанных и прецизионных металлических тензорезисторов мал по абсолютной величине и при передаче по токосъемнику подвержен влиянию помех. Кроме тензо-резисторных, применяют магнитоупругие МЭП [40]. Второй метод осуществляют с Помощью двух растровых дисков, расположенных рядом, но опирающихся на упругий элемент возможно дальше друг от друга. Взаимное угловое перемещение растров измеряют оптическим, индуктивным или другим МЭП, чувствительным к этому Параметру  [c.231]

Рассмотрим нестационарную температурную задачу трения. Представим стержень прямоугольного сечения, прижатый давлением р к поверхности вращающегося диска (рис. 7.1). Предполагаем, что материал диска обладает большей прочностью при этом в поверхностном слое стержня возникают пластические деформации, оди-  [c.122]

Пример 3.3. В табл, 3.4 для демонстрации процесса сходимости упругопластического решения методом дополнительных деформаций приведены результаты расчета четырех приближений для задачи о неравномерном нагреве круглого сплошного вращающегося диска постоянной толщины. Табличные зна-тения кривой деформирования материала приведены ниже  [c.83]

При приближении вращающейся лопасти несущего винта к вихревому следу предыдущей лопасти аэродинамические нагрузки на ней сильно меняются в зависимости от относительного положения следа и лопасти. Поэтому для определения переменных индуктивных скоростей и аэродинамических нагрузок в первую очередь нужно установить форму системы вихрей. При вращении лопасти с нее сходят как продольные, так и поперечные вихри. Далее элементы этих вихрей переносятся с местной скоростью воздушного потока, складывающейся из скорости невозмущенного потока и скорости, которую индуцирует на соответствующем элементе система вихрей винта. В предположении постоянства индуктивной скорости сходящая с вращающейся лопасти пелена вихрей имеет вид скошенной винтовой поверхности. На самом деле индуктивные скорости в разных точках пелены вихрей (как и на диске винта) существенно различны. Поэтому действительная форма пелены вихрей, определяемая путем интегрирования перемещений ее точек в неоднородном поле местных скоростей, существенно отличается от упомянутой идеальной пелены. На большом расстоянии вниз по потоку система вихрей винта стремится свернуться в два вихревых жгута, подобных концевым вихрям кругового крыла. Однако для определения нагрузок существенны деформации пелены только вблизи диска винта, и в особенности положение элементов концевых вихрей нри первом приближении их к последующей лопасти. Явление взаимодействия свободного вихря с лопастью не исчерпывается возникновением на лопасти соответствующих аэродинамических нагрузок. Лопасть в свою очередь влияет на вихрь, вызывая значительное изменение скорости  [c.671]

При определении напряжений и деформаций во вращающемся, неравномерно нагретом диске используют уравнения равновесия, упругости и совместности.  [c.322]

Задачи динамики, которым и будет главным образом посвящен наш доклад, мы разделим на два класса. В первой категории задач при определении динамических напряжений приходится принимать во внимание лишь силы инерции движущихся частей и можно оставлять без рассмотрения те деформации, которые эти силы вызывают. Это так называемые задачи кинетостатические. Сюда относятся вопросы о прочности быстро вращающегося кольца или барабана, а также расчет лопаток и быстро вращающихся турбинных дисков.  [c.236]

Мало внимания уделялось большим упругопластическим деформациям при наличии градиентов температур. В. Н. Аль-перт [2] рассмотрел деформации нагретого вращающегося диска, использовав логарифмические деформации. Соотношения  [c.173]

Представим себе движение диска в системе координат, вращающейся с угловой скоростью р. Диск будет покоиться в этой системе, и равновесие его определится тем, что центробежная сила уравновесится упругой силой деформации спицы.  [c.448]

Рассмотрим кольцевой вращающийся диск, составленный из нескольких простых дисков, соединенных между собою посредством напряженной посадки. Физические постоянные, а именно, модуль упругости Е, коэффициент поперечной деформации [х и плотность  [c.208]

Большой круг важных для практических приложений задач в упругопластической области решен для вращающихся дисков, лопаток турбин, различного типа пластин и оболочек (в том числе задач устойчивости при пластических деформациях ползучести).  [c.156]

Для оценки влияния остаточных напряжений на характеристики материала при неравномерном напряженном состоянии (изгиб, кручение, растяжение образцов с надрезом и т. д.) рассмотрим напряжения во вращающемся диске (рис. 8.18). Пусть остаточные напряжения распределяются, как показано на рис. 8.18, а. В этом случае угловая скорость, при которой на наружной поверхности начнется пластическая деформация (рис. 8.18,6 и д). будет больше, чем в случае распределения остаточных напряжений по схеме (рис. 8.18, г). Величина предельной угловой скорости для пластичного материала зависит только от свойств материала и не зависит от первоначальной эпюры остаточных напряжений. Характер эпюры остаточных напряжений, образовавшихся в результате неравномерной пластической деформации диска при вращении, не зависит практически от исходной эпюры (рис. 8.18, в и е).  [c.295]


С помощью деформационной теории пластичности Ю, Н. Шевченко [261, 262] рассмотрел вращающиеся диски в квазистатических температурных условиях. Он разработал также конечно-разностный алгоритм для определения напряжений и толщин [265]. Р. Г. Терехов [277] описал эксперименты, проведенные на дисках с целью получения данных, подтверждающих деформационную теорию. Наблюдались заметные отклонения от требования пропорционального нагружения. Различия между теорией и экспериментом увеличивались с возрастанием пластической деформации. М. Г. Кабелевский [109, ПО] отметил большие различия между расчетными и экспериментально определенными величинами деформаций. Эксперименты проводились на дисках, вращающихся со скоростями от 5000 до 12 500 об/мин, падение температуры вдоль радиуса составляло 800 С. Е. Р. Плоткин [228] экспериментально исследовал пластические зоны в лопастях газовых турбин. Эксперименты, проведенные по термопластичности, относятся преимущественно к частным приложениям, а не к проверке определенной концепции.  [c.173]

Альперт В. Н. Конечные упруго-пластические деформации неравномерно нагретого вращающегося диска. — Прикл. механ., АН УССР,  [c.189]

Спределить деформацию плоского диска, равномерно вращающегося вокруг оси, проходящей через его центр и перпендикулярной к его плоскости.  [c.698]

Дробление жидкости под действием электростатического поля. Так же как в случаях вращающегося диска н воздействия ультразвука, при дроблении под действием электростатического поля начальная неустойчивость быстро нарастает. При этом происходит выбрасывание образований, напоминающих небольшие струи. При вращении диска или действии ультразвука эти струйки неустойчивы и быстро распадаются. В рассматриваемом случае электрическое поле стремится стабилизировать любую образующуюся струю [567, 856], В результате деформация может достичь большой амплитуды и привести к образованию тонких струй, которые затем дробятся. Эти струи видны на фотоснимках, полученных в экспе-римента.х Лютера и Патерсона [509].  [c.148]

Челябинским политехническим институтом совместно с Челябинским тракторным заводом было проведено исследование прочности рабочего колеса радиально-осевой турбины турбокомпрессора ТКР-11 при нестационарных тепловых режимах [38, 83] в связи с наблюдавшимися при доводочных испытаниях разрушениями в виде трещин на тонкой части диска (рис. 79). Была замечена также деформация колеса, в частности, коробление его кромки. Исследование включало термо-метрирование колеса при нестационарных тепловых режимах, которое было проведено как при неподвижном (заторможенном), так и при вращающемся (/гщах=45 000 об/мин) роторе анализ напряженного состояния и оценку прочности диска в условиях теплосмен, выполненную на основе теории приспособляемости натурные прочностные испытания колеса при многократных пусках.  [c.170]

Для обеспечения названных условий вращающийся диск 6 разделен на две части, которые соединены между собой так, чтобы свести к минимуму деформации рабочих поверхностей под действием рабочей среды в гидродинамических клиньях [22]. Диск 6 и кольцо 3 контактируют между собой по узкому пояску (линейной опоре). Из расчета следует, что деформация рабочей поверхности указанного составного диска по сравнению с деформацией цельного консольного диска при одинаковой их толщине уменьшаетгя почти в 10 раз. Одновременно с этим для уменьшения температурных деформаций диска 6 приняты меры по его термоизоляции. Полная соплоскостность всех колодок I осуществляется обработкой их рабочих поверхностей за одну установку на станке. При этом каждая колодка имеет необходимую подвижность за счет упругих связей  [c.68]

Измерение момента трения осуществляется с помощью тензо-балки, связывающей вращающуюся втулку привода с валиком узла, несущего образец. Конструкция разработана таким образом, что трение в опорах вращающихся деталей не влияет на деформацию тепзобалки и не сказывается, таким образом, на точности измерения. Основной частью узла измерения нагрузки при трении является металлический диск, на котором укреплена поворотная платформа с тензобалкой, нажимающей на образец. Платформа снабжена нажимным винтом, с помощью которого можно изменять нормальную нагрузку на образец. В установке используются бесконтактные токосъемники трансформаторного типа с неподвижными сердечниками и Д1агнитная муфта МЭГ-4.  [c.22]

Критическую угловую скорость для вращающегося консольного вала с диском на свободном конце определим, воспользовавшись известными соотношениями между изгибиыми деформациями и действующими силами  [c.67]

Зависимость твердости после термической усталости стали 20Х2М от расстояния от внутренней поверхности приведена на рис. 90 [165]. В приповерхностной зоне наблюдается снижение твердости и она минимальна в тонком слое толщиной 2 мм. Другой характер изменения твердости наблюдается в сплавах железа с алюминием, а также в сплавах железа с медью. Характерные изменения твердости образцов из разных материалов, подвергнутых циклическому нагреву и охлаждению по методу вращающегося диска, после термической усталости приведены на рис. 91 и 92. В тонком поверхностном слое толщиной до 0,2 мм видно значительное снижение твердости, а затем в слое толщиной от 0,2 до 1,5 мм - локальный максимум. На большем расстоянии происходит стабили ия твердости. Такой характер изменения твердости сохраняется и после различных режимов термической обработки. На рис. 93 показано изменение пластической деформации в зависимости от термических циклов.  [c.107]

Теория элемента лопасти представляет собой распространение теории несущей линии на вращающееся крыло. В линеаризованной вихревой модели пелена вихрей состоит из спиральных продольных вихрей, тянущихся за каждой лопастью. В случае невращающегося крыла деформациями вихревой пелены и сворачиванием концевых вихрей обычно -можно пренебречь, поскольку элементы вихрей уносятся вниз по потоку и удаляются от крыла. Вращающаяся же лопасть, напротив, постоянно приближается к элементам пелены вихрей, сходящих с лопасти винта, идущей впереди рассматриваемой. Поэтому модель пелены вихрей, используемая для расчета индуктивных скоростей на лопасти, должна быть более детальной и точной, чем в случае крыла. Сходящие с концов лопастей участки вихревой пелены быстро сворачиваются в концевые вихревые жгуты, которые лучше описываются вихревой нитью, чем пеленой вихрей. Для многих режимов полета требуется учитывать деформации концевых вихревых жгутов, вызываемые созданными этими жгутами индуктивными скоростями, так как без этого не удается произвести достаточно точный расчет нагрузок. В излагаемых далее простых способах расчета индуктивной скорости используется схема активного диска. Это позволяет определять среднюю индуктивную скорость по закону сохране ния количества движения.  [c.430]

При растяжении (или сжатии) без изгиба суммарная деформация е равна г=а1Е+Ёр +ед+а1. Первое слагаемое в правой части соответствует упругой деформации, второе — быстрая (практически мгновенная) иластич. деформация в момент приложения нагрузки третье — деформация П., растущая со временем четвертое — температурная деформация а — коэфф. линейного расширения, t — разность темп-р). Величины в и в определяются различными физич. "процессами и потому их следует разграничивать. В условиях установившейся П. а, t, е от времени не зависят и потому rfe/rft== —dz ldx, т. е. со временем меняется лишь g. Расчеты па П. позволяют определять напряжения, деформации и время работы в условиях П., исходя из св-в данного материала, задаваемых или графически — кривой П., или нек-рыми хар-ками сопротивления П. Такие расчеты проводят Гл. обр. для стадии установившейся П., предполагая, что Spp ajE. Существуют расчеты на 11. для тонкостенных и толстостенных труб, пластин, вращающихся дисков, турбинных лопаток и диафрагм, фланцев, оболочек, пружин, валов и т. д. П. играет важнейшую роль для материалов паропроводов, паровых котлов, турбинных лопаток, частей атомных реакторов, ракет и др. деталей, длительно подвергаемых механич. и термич. нагрузкам и нагреву. Ввиду отсутствия в б. ч. случаев соответствия между кратковременными ( статическими ) испытаниями и испытаниями на П. оценка жаропрочных сплавов проводится в значит, море по их сопротивлению П.  [c.7]


Ниже предлагается метод расчета чапряженного и деформированного состояний во вращающихся дисках переменной толщины в случае, когда температура диска зависит от радиуса. Связь между напряжением и деформацией ползучести берется по теории упрочнения в форме  [c.110]

В другой представляющей большое значение статье ), посвященной деформациям, симметричным относительно оси, Винклер исследует цилиндрическую трубу, находящуюся под равномерными внутренним и внешним давлениями, и выводит формулу Ламе. При определении необходимой толщины стенки для трубы Винклер опирается на теорию наибольших нормальных деформаций и приходит к формуле, несколько отличающейся от формулы Ламе. Оп исследует также и условия по торцам трубы, рассматривая сферические и плоские торцы. Для того и другого случаев Винклер дает уравнения для напряжений и показывает, что цилиндрическая труба испытывает у концов некоторый местный изгиб. Учитывая его, он вводит поправки в теорию, разработанную до него Шеффлером (см. стр. 163). В заключение Винклер выводит соотношения между напряжениями во вращающихся дисках и пользуется ими в расчете маховиков ).  [c.187]

Иными словами, твердые тела одновременно обладают некоторым сопротивлением начальной пластической деформации или пределом текучести (в этом их отличие от собственно жидкостей) и существенной зависимостью этого сопротивления от скорости (т. е. вязким поведением, подобно поведению вязких жидкостей). Явление по,тзучести, т. е. постепенного нарастания остаточной деформации во времени при достаточной температуре, есть важнейшее проявление вязко-пластических особенностей материалов. Подобно теориям пластичности (см. п. 5) на основе механики сплошных однородных сред, развиты математические теории ползучести, на основе которых проведены многочисленные расчеты [15]. Они позволили определить кривые релаксации по кривым ползучести (и наоборот), рассчитать ползучесть при сложных напряженных состояниях для труб под внутренним давлением, пластин, оболочек, вращающихся дисков и т. п. Далее, по кривым ползучести при простом напряженном состоянии (обычно при растяжении) и постоянной температуре рассчитана  [c.138]


Смотреть страницы где упоминается термин ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ : [c.26]    [c.503]    [c.17]    [c.270]    [c.491]    [c.139]   
Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.0 ]



ПОИСК



ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ различной формы

ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ сферические — Контакт с деталями

ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ цилиндрические под действием осесимметричной нагрузки — Расче

ДЕФОРМАЦИИ - ДИСКИ ВРАЩАЮЩИЕСЯ чугунные — Коэффициент концентрации

ДЕФОРМАЦИИ — диски

Деформация во вращающемся диск напряжений 184 — Поля скоростей

Деформация во вращающемся диск форма представления

Диск вращающийся

Диск вращающийся в условиях ползучести — Деформации

Пластинки продольные деформации вращающегося диска



© 2025 Mash-xxl.info Реклама на сайте