Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхности — Обработка — Выбор методов

Комплексное проведение производственных исследований точности работы действующих автоматических линий, экспериментальных исследований и теоретического анализа должно дать ответы на следующие основные вопросы проектирования технологических процессов производства корпусных деталей на автоматических линиях а) обоснование для выбора технологических методов и числа последовательно выполняемых переходов для обработки наиболее ответственных поверхностей деталей с учетом заданных требований точности б) установление оптимальной степени концентрации переходов в одной позиции, исходя из условий нагружения и требуемой точности обработки в) выбор методов и схем установки при проектировании установочных элементов приспособлений автоматических линий для обеспечения точности обработки г) рекомендации по применению и проектированию узлов автоматических линий, обеспечивающих направление и фиксацию режущих инструментов в связи с требованиями точности обработки д) выбор методов настройки станков на требуемые размеры и выбор контрольных средств для надежного поддержания настроечного размера е) обоснование требований к точности станков и к точности сборки автоматической линии по параметрам, оказывающим непосредственное влияние на точность обработки ж) обоснование требований к точности черных заготовок в связи с точностью их установки и уточнением в ходе обработки, а также установление нормативных величин для расчета припусков на обработку з) выявление и формирование методических положений для точностных расчетов при проектировании автоматических линий.  [c.98]


Регенерация смазочных масел и технологических жидкостей в процессе их эксплуатации играет чрезвычайно важную роль. Особо следует подчеркнуть значение фильтрации смазочноохлаждающих жидкостей в процессе прецизионной обработки деталей, когда зерна абразивных материалов и грязи, проникая в зону резания, снижают точность и чистоту обрабатываемой поверхности, ускоряют износ инструмента. Выбор метода очистки смазочно-охлаждающей жидкости зависит от ее состава, качества, условий обработки и характера загрязнений. Очистка смазочно-охлаждающей жидкости может осуществляться отстаиванием, фильтрацией и центрифугированием.  [c.124]

Выбор метода обработки зависит от требований, предъявляемых к точности и классу шероховатости обработки данной детали. Необходимая точность обработки в соответствии с требованиями того или другого класса точности достигается на различных станках разными способами. При выборе метода обработки необходимо учитывать экономическую целесообразность его применения. Класс точности и класс шероховатости поверхностей детали должны определяться только конструктивными и эксплуатационными условиями ее работы. Недостаточная точность может ухудшить качество машины, но в то же время  [c.130]

Ранее была отмечена особая чувствительность усталостной прочности титановых сплавов к характеру финишной поверхностной обработки.. Естественно, что многие исследования были направлены на разработку специальных методов поверхностного упрочнения титана, максимально повышающих его предел выносливости. Выявлен наиболее эффективный способ—применение различных видов ППД. Этот способ уже широко используют для многих металлов, а для титановых сплавов он оказался крайне необходимым и перспективным. По исследованиям в этом направлении в настоящее время постоянно публикуется большое число работ (главным образом в периодической литературе). Можно без преувеличения утверждать, что основные резервы повышения усталостной прочности титановых сплавов состоят именно в правильном выборе метода ППД и финишного сглаживания поверхности деталей, подвергающихся циклической нагрузке. Если для стали основная польза ППД заключается в создании сжимающих поверхностных напряжений, то для титановых сплавов, как уже показано, имеет не меньшее значение повышение прочности (за счет наклепа) и однородности механических свойств поверхностных слоев. Часто поверхностный наклеп титана необходим, чтобы снять неблагоприятный эффект предшествующей обработки, которую исключить из технологического процесса не всегда уда ется (например, шлифование или травление).  [c.196]


Анализ опубликованных данных показывает, что в настоящее время для изучения изнашивания нет экспериментально обоснованной оптимальной формы и размеров образцов не только для различных схем испытания, но и для изучения одного вида изнашивания, поэтому многие результаты испытания оказываются иногда совершенно несопоставимыми, хотя получены они дл5 одних и тех же материалов в аналогичных условиях взаимодействия изнашиваемой поверхности и абразива. При выборе формы и размеров образца для изучения изнашивания при ударе учитывали его технологичность, возможность термической и химико-термической обработки, размеры поверхности изнашивания и удобства исследования ее макро- и микрогеометрии и микроструктуры. Для всех методов испытания на изнашивание при ударе был выбран цилиндрический образец диаметром 10 и длиной 25 мм.  [c.38]

Правильное решение, принятое при выборе параметров шероховатости поверхностей деталей, а также при выборе методов обработки, обеспечивающих получение поверхностей с заданной шероховатостью, оказывает серьезное влияние па качество конструкции, ее технологичность н позволяет установить наиболее экономичные методы изготовления деталей (см. гл. 7).  [c.138]

Сложность научно обоснованного решения перечисленных задач определяется прежде всего их взаимосвязью. Выбор методов обработки поверхности детали существенно зависит от типов и компоновок оборудования, которые определяются на завершающих этапах проектирования технологических процессов. Например, окончательный выбор между методами фрезерования и протягивания поверхности детали можно сделать лишь применительно к конкретным вариантам компоновок станков, Наиболее рациональный метод получения заготовок выбирают в результате сравнения полных затрат на изготовление деталей, включающих затраты на их обработку по оптимальному технологическому процессу. Поэтому одной из особенностей проектирования процессов массового производства является комплексный подход к задаче оптимизации обработки деталей. Второй особенностью является поэтапный, пошаговый процесс отработки оптимального решения причем на каждом последующем шаге параметры процесса уточняются, число анализируемых вариантов сокращается, а точность и сложность расчетов увеличивается.  [c.180]

Если технологом выбран наиболее рациональный вид заготовки, то можно перейти к следующей задаче оптимизации при принятом методе получения заготовки выбрать оптимальные схемы и компоновки оборудования с учетом вариантности технологического маршрута обработки детали. В связи с тем, что на стадии выбора и обоснования технологического маршрута формируются условия, обеспечивающие заданную точность обработки детали и качество поверхностей, необходимо рассмотреть вопросы оценки и выбора методов обработки по показателям производительности и точности, вопросы прогнозирования точности обработки деталей на автоматизированном оборудовании.  [c.181]

Методы обработки, режимы резания и последовательность выполнения переходов. Исходными данными при выборе методов обработки и необходимого числа проходов являются требуемая точность обработки и допустимая шероховатость поверхности. Сведения о достижимой точности обработки и о параметрах шероховатости поверхности приведены при описании технологических возможностей различных методов обработки, используемых при обработке корпусных деталей на АЛ (см. гл. 2).  [c.16]

Вопрос определения типа металлорежущего станка рещается в следующей последовательности вся поверхность детали разбивается на отдельные элементы, которые могут быть описаны одним из видов поверхностей, рассмотренных в методике. После анализа методов обработки элементарных поверхностей рещается вопрос о выборе типа универсального станка.  [c.103]

При проектировании исходными данными являются характеристики поверхностей готовой детали и заготовки. Проектирование (см. рисунок) включает выбор метода обработки, выбор базовых поверхностей формирование переходов и операций, построение маршрута обработки.  [c.13]


ВЫБОР МЕТОДОВ ОБРАБОТКИ В ЗАВИСИМОСТИ ОТ ЗАДАННОЙ ЧИСТОТЫ ПОВЕРХНОСТИ  [c.424]

ВЫБОР МЕТОДОВ ОБРАБОТКИ В ЗАВИСИМОСТИ ОТ ЧИСТОТЫ ПОВЕРХНОСТИ 425  [c.425]

Пневмокамеры 486 Поверхности — Грунтовка 737 — Обработка — Выбор метода в зависимости от заданной чистоты 424  [c.780]

Для ориентировочного выбора метода обработки в зависимости от требуемой чистоты поверхности можно пользоваться габл. 106.  [c.145]

Установка заготовок и применяемые приспособления. При установке заготовок (литых, сварных или обработанных давлением) на станке необходимо точно совместить ось симметрии заготовки с осью вращения планшайбы станка. Выбор метода установки и крепления заготовки на станке определяется конфигурацией заготовки, серийностью изготовления и принятым методом обработки. Методы установки и крепления заготовок на станке существенно влияют на точность, качество обрабатываемых поверхностей и на общую продолжительность обработки.  [c.254]

Разработка типовых технологических процессов включает а) выбор оптимальных, наиболее прогрессивных методов обработки типовых форм поверхностей деталей и их сочетаний б) разработка наиболее рациональных технологических процессов (маршрутной технологии) изготовления деталей на основе выбранных оптимальных технологических методов обработки в) выбор элементов автоматизированного технологического процесса, обеспечивающих его оптимальную автоматизацию и легкую переналаживаемость.  [c.529]

Установление маршрута обработки основных поверхностей деталей имеет существенное значение при выборе методов контроля качества параметров, предъявляемых на приемку деталей.  [c.443]

Смазочно-охлаждающие жидкости относятся к комплексу средств, обеспечивающих эффективную эксплуатацию режущего инструмента, станка и оказывающих влияние на успешное освоение новых прогрессивных методов обработки металлов. Выбор СОЖ зависит от вида обработки (черновая или чистовая), обрабатываемого материала (сталь, чугун, цветные металлы), требований к качеству обрабатываемой поверхности, типа технологической операции (точение, сверление, развертывание, резьбонарезание). СОЖ снижает интенсивность силовых и тепловых нагрузок на режущий инструмент и обрабатываемую деталь, позволяют удалять из зоны резания стружку и продукты износа, благоприятно воздействуют на процесс резания металлов значительно уменьшается износ инструмента, наростообразование, повышается качество обработанной поверхности, снижаются затраты электроэнергии на резание. Наиболее эффективно применение СОЖ при обработке вязких и пластичных материалов наименьший эффект дает применение СОЖ при обработке чугуна и других хрупких материалов.  [c.365]

Выбор метода обработки зависит от качества зацепления червячной передачи. Червячные колеса для червяков с углом подъема винтовой линии до 8° обрабатывают методом радиальной подачи (рис. 29, а). При большем угле происходит повреждение боковых поверхностей зуба, что вызывает ухудшение пятна контакта. Для больших углов подъема червяков и при обработке фрезами-летучками применяется способ тангенциальной подачи (рис. 29, б). Комбинированный способ ради-ально-тангенциальной подачи (рис. 29, в) сочетает в себе преимущества обоих способов.  [c.589]

После проведения расчетов для всех возможных методов обработки в блоке 8 (рис. 3.3.3) осуществляется окончательный выбор метода обработки конкретной поверхности, обеспечивающей получение необходимых па-  [c.325]

При выборе метода обработки поверхности исходят из его технологических возможностей обеспечения точности и качества поверхности величины снимаемого припуска времени обработки в соответствии с заданной производительностью.  [c.202]

Последовательность выбора методов обработки поверхностей рекомендуется следующая  [c.202]

На второй стадии для каждой рабочей позиции разрабатьшается специальный чертеж "Наладка инструментальная", в котором показывают заготовку с инструментами в конечном положении, наладочные размеры, направления и величину рабочих и вспомогательных ходов, режимы резания, машинное и вспомогательное время ходов. Этим чертежом руководствуются при наладке АС. Все последовательно выполняемые переходы находят отражение в циклограмме работы станка, определяющей время цикла обработки. Задачи обработки систем основных поверхностей разнообразны, а их решения многовариантны. Наиболее типичные решения выработаны по обработке базовых поверхностей, а также по выбору методов обработки, обеспечивающих точность диаметральных размеров отверстий.  [c.700]

Составление маршрута последовательности обработки. После выбора. метода обработки каждой поверхности составляют маршрут обработки инструмента. Составление маршрута — сложная задача с большим числом возможных вариантов решений. Его цель — дать общий план обработки инструмента, наметить содержание операций технологического процесса и выбрать тип оборудования. При определении маршрута обработки рекомендуется использовать типовые решения и учитывать, что весь техналоги-ческий процесс изготовления режущих инструментов надо разделить на этапы, а также придерживаться типовой последовательности обработки инструмента.  [c.24]

Экономическая точность размеров элементов деталей и параметры шероховатости обработанных поверхностей для основных методов обработки плоских и цилиндрических наружных и внутренних поверхностей приведена в табл. 1.3.1. Табл. 1.3.1 позволяет выбрать методы окончательной обработки поверхностей. Эта же задача выбора метода окончательной обработки поверхностей может бьпъ решена одновременно с установлением последовательности (маршрута) обработки каждого элемента детали с использованием  [c.81]


Предметом исследования и разработки в технологии машиностроения являются виды обработки, выбор заготовок, качество обрабатываемых поверхностей, точность обработки и припуски на нее, базирование заготовок способы механической обработки поверхностей — плоских, цилиндрических, сложнопрофильных и др. методы изготовления типовых деталей — корпусов, валов, зубчатых колес и др. процессы сборки (характер соединения деталей и узлов, принципы механизации и автоматизации сборочных работ) конструирование приспособлений.  [c.13]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Второй уровень предназначен для технологической подготовки производства. В нее входят установка основных режимов и маршрутов обработки отдельных поверхностей, выбор методов иодготовки, подбор деталей для групповой обработки, подготовка приспособлений и инструментов.  [c.6]

В целях своевременного и эффективного внедрения стандарта разрабатывается ряд методик. Среди них — Выбор методов обработки типовых поверхностей на металлообрабатывающих станках , которая рекомендует способы сопоставления различных методов обработки, решаюгцих одну и ту же технологическую задачу. В результате решается вопрос определения типа металлорежущего станка и прогнозируется оптимальный технологический процесс осуществления обработки детали на этом типе станка.  [c.103]

Для более точного выбора метода механической обработки в зависимости от требуемого класса точности и чистоты поверхности необходимо учитывать тип детален, погрешности базировання обрабатьвае-ыой детали, ее жесткость и характе-  [c.146]

Выбор связки алмазного круга в зависимости от условий работы (207). Выбор зернистости и концентрации алмазного круга в зависимости от типа связи и характера обработки твердых сплавов (210). Выбор формы алмазного круга в зависимости от метода шлифования (211). Рекомендации по выбору форм и зернистости алмазных кругов при заточке и доводке твердосплавного инструмента (211). Выбор характеристики алмазного круга в зависимости от требуемой чистоты обрабатываемой поверхности твердого сплава (213). Рекомендации по выбору характеристики алмазных кругов на органической связке для шлифования, заточки и доводки твердосплавных режущего и мерительного инструментов, деталей штампов и других изделий (214). Выбор характеристики кругов из карбида кремния зеленого (для предварительной заточки) и алмазных кругов (для чистовой заточки и доводки) в зависимости от марок твердых сп.яавов и способа обработки (215). Выбор типа алмазного крута для шлифования, заточки и доводки твердосплавного режущего инструмента (217). Характеристика алмазных кругов для шлифования, заточки и доводки, применяемых в различных странах (219). Рекомендуемые режимы заточки и доводки (220). Круги шлифовальные из синтетических алмазов (220). Круги отрезные из синтетических алма-  [c.539]

При нанесении защитной краски важны выбор метода noji товки защищаемой поверхности, тип краски и способ ее нан ния. Если поверхность плохо подготовлена под покраску, то дг самая стойкая краска быстро придет в негодность. Перед к шепнем поверхности необходимо очищать от грязи, масел и о липы. Обычно стальные сосуды и конструкции подвергают пес струйной обработке и предварительно оцинковывают перед несением краски [14]. В зависимости от условий эксплуата имеется широкий выбор защитных красок. Некоторые из i перечислены в табл. 12 с указанием химической стойко в различных условиях.  [c.104]

Степень уплотнения пористой заготовки при использовании этих трех процессов зависит от совместимости структуры армирующего каркаса с конкретным методом пропитки. Каркасы, обладающие низкой проницаемостью для газов, лучше поддаются обработке с помощью метода с разностью давлений, поскольку перепад давления по толщине заготовки является движущей силой пропитки. Каркасы с полостями большого размера лучше уплотняется с помощью метода с термическим фадиентом. Но для заготовок малой толщины или неправильной формы эти два метода подходят мало. Основным же недостатком метода с фадиентом температуры является необходимость применения специально сконструированных нафевателей для пропитки деталей различной формы. Кроме того, в печи может обрабатываться только одна деталь. Для одновременной обработки нескольких заготовок, в том числе разных форм, вполне пригоден изотермический процесс. Однако при использовании изотермического метода возможно возникновение поверхностной корки из осажденного углерода, когда скорость химического осаждения углерода на расположенных на внешней поверхности волокнах существенно превышает скорость его осаждения на поверхности внутренних волокон. Вместе с тем при правильном выборе температуры, давления и скорости протекания газового потока удается скорость осаждения на внутренних волокнах приблизить к скорости осаждения на внешних волокнах.  [c.236]

Выбор метода упрочнения поверхности деталей также зависит от технологической схемы обработки, При этом необходимо проанализировать данные о химическом составе и физико-механических свойствах обрабатьшаемого материала, требования по точности и шероховатости, предъявляемые к детали, наличия и вида покрытия, необходимой степени поверхностного упрочнения. В табл. 9.2 приведены данные об эффективности упрочнения поверхности деталей в зависимости от материала и методов обработки.  [c.468]

Выбор методов и средств для обезжиривания зависит ие только от характера загрязнений, но и вида последующей обработки изделий. Например, если после обезжиривания проводится обработка в водных растворах (фосфатирование или найесение водоразбавляемых лакокрасочных материалов), для обезжиривания рекомендуется применять водные щелочные составы. В остальных случаях для обезжиривания используют органические растворители. При этом органические растворители должны обладать высокой растворяющей способностью, химической стабильностью, способностью испаряться с поверхности изделий за короткое время, обладать возможностью регенерации, должны быть экономически доступными и не дефицитными, безвредными, пожаробезопасными и не оказывать коррозионного воздействия на металлы.  [c.111]


Выбор метода очистки поверхности определяется металлом изделия, характером механической обработки поверхности, наличием каких-либо постоянных покрытий (гальванических, химических, анодизационных, лакокрасочных), природой и количеством загрязнений и габаритными размерами изделия.  [c.16]

При выборе методов измерений образца и вычислений напряжения aj и деформации е, необходимо учитывать следующие обстоятельства. Площадь fo поперечных сечений рабочего участка образца в его исходном состоянии при точности изготовления образца согласно ГОСТам может быть неодинаковой. Различия для сечений с наибольшей и наименьшей площадью в образце из листового проката могут достигать 2 %. Для образцов, вырезанных из труб и других полуфабрикатов, это различие может достигать 5 % н более вследствие разнотолщинности, так как обработка поверхностей образца для выравнивания толщины обычно не допускается. Вследствие этого для каждого поперечного сечения из ряда сечений с площадями foi> Fq2, foft имеется своя зависимость усилия растяжения образца Рй (8ft) в виде  [c.159]

Выбор метода обработки, вообще говоря, зависит от толщины материала и от требуемого коэффициента формы. Высокий коэффициент формы может быть получен при прямом сверлении. В металлах толщиной до 1 мм данным методом получаются отверстия диаметром 20-25 мкм. При плотности мощности излучения 10 -10 Вт/см можно делать и меньшие отверстия, но эти отверстия на выходе сходятся на конус [248]. При прямом сверлении разброс по размеру отверстия составляет обычно 10% его диаметра. Сверление отверстий диаметром выше 50-100 мкм производится чаще всего методом контурной резки. Этот метод позволяет получать глубокие отверстия, но, естественно, с малым коэффициентом формы. Шероховатость кромки обработки определяется распределением интенсивности в пятне фокусировки, степенью стабильности оси диаграммы направленности и точностью перемещения луча сканирующим устройством. При многопроходном сканировании поверхность реза выравнивается и полируется. Разумеется, если необходимо сделать большое количество микроотверстий за единицу времени, первый метод удобнее, но он требует более высоких мощностей. Если высокая точность необязательна, то для подачи излучения ЛПМ на заготовку можно использовать оптические световоды [237]. Качество отверстия при волоконном сверлении близко к качеству обычных механических методов обработки.  [c.239]

Инструмент и приспособления. Одной из важных задач реализации методов электромеханической обработки является выбор соответствующего проводимым процессам материала инструмента, являющегося наиболее критичным элементом технологических установок ЭМО, работающего в жестких условиях -высоких температурных и силовых нагрузках. При этом необходима высокая электрическая проводимость материала и достаточная износостойкость контактной поверхности. В этой связи наиболее целесообразным является применение в качестве материала инструмента гермостойких бронз и твердых сплавов с насыщением объема материалами на основе меди.  [c.556]

Выбор вида обработки (литье, обработка давлением, механическая обработка резанием и др.) Выбор вида обработки. Оценка точностных харакгери-стик видов и качества поверхностей. Выбор метода обработки Классификаторы изделий и операций. Методика оценки точности и качества поверхностей деталей  [c.381]


Смотреть страницы где упоминается термин Поверхности — Обработка — Выбор методов : [c.182]    [c.180]    [c.7]    [c.551]    [c.302]    [c.114]   
Справочник машиностроителя Том 2 (1952) -- [ c.740 ]



ПОИСК



Выбор Поверхность

Выбор и обработка баз

Выбор метода обработки

Выбор метода обработки наружных поверхностей заготовок

Выбор методов обработки в зависимости от заданной чистоты поверхности(канд техн. наук В. С. Корсаков)

Метод выбора

Методы поверхностей

Обработка Методы

Обработка поверхности

Поверхности Обработка — Выбор метода в зависимости от заданной чистоты

Поверхности — Обработка — Выбор методов шлифованные — Качество

Технологические предпосылки выбора метода обработки плоских поверхностей



© 2025 Mash-xxl.info Реклама на сайте