Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точность и параметры поверхностного слоя при

Точность и параметры поверхностного слоя при обработке наружных цилиндрических поверхностей  [c.13]

Точность и параметры поверхностного слоя при обработке отверстий  [c.17]

Геометрические параметры качества поверхностного слоя и точность заготовки в определенном смысле взаимосвязаны. Например, если заготовку получают литьем в песчаные формы, то микро-и макронеровности не позволяют получить высокую точность размеров. Выбирая вид заготовки и технологию ее производства, необходимо знать точность и качество поверхностного слоя заготовки, которые при этом могут быть получены.  [c.17]


На станках с ЧПУ обработка деталей выполняется автоматически по управляющей программе. Программа содержит указания последовательности обработки элементарных поверхностей (конструктивных элементов детали) и циклограммы перемещений рабочих органов станка для каждого перехода обработки. Общий цикл обработки детали состоит из совокупности единичных циклов обработки отдельных элементов (поверхностей) детали. Индивидуальные параметры детали (геометрической формы, требований точности и качества поверхностного слоя) учитываются при технологическом проектировании маршрута (последовательности) и выборе методов обработки.  [c.782]

При назначении припусков и расчете промежуточных и исходных размеров заготовок известными являются переходы обработки элементарных поверхностей, условия установки заготовок на каждом переходе обработки и параметры геометрической точности и качества поверхностного слоя элементарной поверхносги до (индекс -1) и после (индекс ) каждого перехода. По этим исходным данным определяют припуск и проводят расчет промежуточных и исходных размеров заготовок. Расчет могут вести по нескольким вариантам  [c.25]

В ряде случаев при проведении оптимизационного поиска с целью получения расчетных величин режимов обработки (сочетания скорости резания V, подачи 5 и глубины резания г или сочетания скорости в и подачи 5) не удается обеспечить требуемый комплекс показателей качества поверхностного слоя и точность обработки детали, то есть один из нескольких показателей, входящих в целевую функцию оптимизации. Даже при лучшем рещении задачи оптимизации имеют значительные отклонения от своих оптимальных значений. Такая ситуация наиболее часто возникает при числе показателей, входящих в целевую функцию, параметров точности и качества поверхностного слоя, превышающем число переменных процесса оптимизационного поиска изменяемых технологических параметров обработки.  [c.116]

Изучение состояния поляризации можно провести как в отраженном, так и в проходящем свете. В случае металлов преломленная волна практически поглощается в очень тонком поверхностном слое. Поэтому в данном случае целесообразно использовать измерения в отраженном свете. Наоборот, при слабом отражении от диэлектриков основным методом исследования является эллипсометрия в проходящем свете. В тех случаях, когда возможны соответствующие измерения в отраженном и проходящем свете, эллипсометрия в отраженном свете удачно дополняет эллипсометрию в преломленном свете, и наоборот. Следует отметить, что эллипсометрия позволяет не только определять оптические константы чистых поверхностей материалов, она позволяет также, исходя из непосредственно измеряемых параметров эллипса поляризации, определить характеристики тонких поверхностных пленок, возникающих вследствие адсорбции и т. д., например толщину (вплоть до долей ангстрема) и показатель преломления (с точностью до 10" ) поверХНОСТНОГО слоя.  [c.64]


В блоке 5 осуществляется выбор параметров состояния рабочих поверхностей деталей, обеспечивающих требуемые значения эксплуатационных свойств в допустимых пределах их изменения. В этом блоке можно решать разные задачи 1) при известных размерах детали, обусловленных конструктивными соображениями, выбирают материал, точность размеров и параметры состояния поверхностного слоя 2) при заданном материале детали определяют размеры, их точность и параметры состояния поверхностного слоя 3) при известных размерах и материале детали определяют их точность и параметры состояния поверхностного слоя 4) при известных материале, размерах и точности детали определяют параметры состояния поверхностного слоя.  [c.299]

Кривые распределения прочности при изгибе сосредоточенной нагрузкой приведены на рис. 37, а, консольном изгибе — на рис. 37, б и ударно-циклической нагрузке — на рис. 37, в. Испытанию были подвергнуты образцы из сплава ВКб без покрытий и с покрытием TiN КИБ толщиной 6 мкм. Партии исследуемых образцов насчитывали от 40 до 60 единиц для достоверного построения кривых распределения. Необходимо отметить, что в исследованиях образцов инструментальных материалов на прочность для большей статистической достоверности необходимо испытывать как можно большее число образцов при одном напряжении. Однако изготовление большого количества совершенно идентичных образцов из инструментальных материалов крайне затруднительно из-за невозможности обеспечения полного подобия структур и составов, параметров поверхностного слоя, геометрического подобия и т. д. Как видно из приведенных на рис. 37 графиков распределения прочности, они с достаточно высокой степенью точности приближаются к линейной зависимости и, таким образом, наиболее удовлетворительно описываются распределением Вейбулла (23). Поэтому результаты прочностных испытаний образцов из инструментальных материалов с покрытиями обрабатывали с использованием положений статистической теории хрупкой прочности Вейбулла [25].  [c.84]

Практически невозможно изготовить деталь абсолютно точно, так как при обработке всегда возникают погрешности. С другой стороны, практически и не требуется соблюдения абсолютной точности при изготовлении деталей. Обеспечить точность обработки — это значит обеспечить соблюдение геометрических параметров и физических свойств обработанных деталей в пределах заданных допусков. При механической обработке деталей возникают погрешности трех видов размеров, формы и качества поверхностного слоя.  [c.273]

Заточка сверл. Заточка сверл одностороннего резания должна производиться не менее тщательно, чем специальных сверл. Естественно, что высокая точность геометрических параметров и качество поверхностного слоя режущих граней сверла получается только при машинной заточке.  [c.68]

Критерий точности обработки и параметров качества поверхностного слоя. При работе на оптимальной скорости резания обеспечивается наибольшая размерная стойкость инструмента и минимальный его  [c.113]

При выборе способов обеспечения, заданных условиями эксплуатации, точности изготовления деталей и качества их рабочих поверхностей, следует иметь в виду, что качество обработанной поверхности и точность деталей машин в основном характеризуются геометрическими параметрами (макрогеометрией, волнистостью, шероховатостью, направлением штрихов обработки, точностью взаимного расположения элементарных поверхностей и др.) физико-механическими свойствами поверхностного слоя деталей (наклепом, остаточными напряжениями) и физико-химическими свойствами поверхностного слоя, которые определяются взаимодействием ненасыщенных силовых полей поверхностных атомов твердого тела с силовыми полями молекул внешней среды, находящихся в контакте с поверхностью твердого тела.  [c.369]


Изменение диаметра обрабатываемой заготовки в зависимости от давления, вызываемого силой Р, приведено на рис. 25, а. Обрабатываемый материал — сталь 40Х. Режим обработки 1= = 500 А 0 = 42 м/мин 5 = 0,4 мм/об Рг=30 мкм начальное 2=22,6 мкм г=15 мм. Некоторое увеличение диаметра, вызываемое силой, превышающей 750 Н, объясняется появлением вторичной шероховатости поверхности. Как показывают исследования, изгиб кривой в большинстве случаев близок или соответствует наиболее низкой шероховатости поверхности и оптимальному давлению. Влияние числа рабочих ходов на уменьшение диаметра при указанных выше режимах обработки показано на рис. 25, б. Основное изменение диаметра происходит после первого рабочего хода. Число рабочих ходов может оказывать влияние на уменьшение диаметра не только в связи с уменьшением параметра 7 г, но и вследствие некоторой развальцовки поверхностного слоя. Повторные рабочие ходы дают возможность получить необходимую точность обработки однако число их, как правило, не должно превышать двух-трех.  [c.35]

В табл. 3.18 приводятся рекомендации по выбору глубины резания. Относительно небольшое влияние глубины резания на период стойкости резцов при точении позволяет при черновой обработке весь припуск снимать за один рабочий ход (кроме снятия повышенных припусков при обработке на маломощных станках). При чистовом точении число проходов зависит от требуемых параметров шероховатости и точности обработанной поверхности. При тонком точении с высоким качеством поверхностного слоя и шероховатостью поверхности от Ка - 0,32...0,16 мкм до Rz = 0,050...0,025 мкм глубина резания может доходить до 0,03 мм (см. табл. 3.44).  [c.113]

При накатывании обеспечиваются следующие характеристики высокие степени точности резьбы 4 - 5-я при работе тангенциальными головками, 6 - 7-я при накатывании головками с осевой подачей для метрических резьб и 7-8-я при накатывании головками с осевой подачей для трапецеидальных резьб параметр шероховатости поверхности профиля резьбы Ra < 1,25 мкм повышение прочности деталей с накатанной резьбой на 25...30 %, а также износостойкости поверхностного слоя резьбы.  [c.555]

При решении этих задач сталкиваются с рядом ограничений. Так, физико-механические свойства материалов определяются наличием соответствующих марок, точность размеров и параметры состояния поверхностного слоя - технологическими возможностями, т.е. накладываются технические ограничения  [c.299]

Средние значения припусков гм на механическую обработку отливок из черных и цветных сплавов, т. е. суммарные припуски на сторону на все переходы механической обработки, поверхности отливки, обеспечивающие получение детали при наименьшем расходе материала, включают две составляющие параметр качества поверхностного слоя отливок (Пх), зависящий от глубины дефектного слоя и высоты микронеровностей отливки, и параметр геометрической точности отливки (Па), зависящий от допусков на размеры отливки (То) и детали (Т), а также допуска коробления (Т ор) — при обработке плоскости, или допуска  [c.594]

Затупленные участки сверл должны быть восстановлены при заточке. В процессе заточки необходимо сохранить оптимальные геометрические параметры сверл, обеспечить точность размеров и щероховатость заточенных поверхностей в заданных пределах и не допустить структурных изменений в поверхностных слоях режущей части инструмента.  [c.244]

Износ режущего инструмента практически оказывает влияние на все качественные характеристики обрабатываемых деталей. Так, радиальный износ резцов вызывает постепенное смещение центра группирования точностных параметров деталей (рис. 4.33), что требует проведения своевременных поднастроек системы СПИД. Постепенное затупление инструмента может привести к изменению шероховатости поверхности, что следует учитывать при выборе подачи на оборот изделия. Имеющее место при этом увеличение силового режима может неблагоприятно сказаться на виброустойчивость системы СПИД, упругие перемещения си- стемы возрастают, а это отражается на точности обрабатываемых деталей. Вместе с этим затупление инструмента оказывает влияние на изменение характеристик качества поверхностного слоя деталей (глубину наклепа, твердость и др.), а следовательно, на их долговечность и надежность в работе.  [c.301]

Качество шлифованных деталей определяет их работоспособность, долговечность и надежность. Указанные параметры зависят не только от классов точности размеров, правильности геометрической формы и шероховатости поверхности, но и от свойств поверхностного слоя детали. Ленточное шлифование является одним из путей решения проблемы качества финишной обработки тяжелонагруженных деталей при высокой производительности их обработки.  [c.122]

Величины bi могут колебаться от bimin до imax, что обусловливается видом ограничения, технологическими характеристиками используемого оборудования, материалом заготовки, требованиями к точности и качеству поверхностного слоя обрабатываемых деталей и т. д. Используя подход имитационного моделирования, находят отклонения от оптимальных параметров процесса и целевой функции, полученных по усредненным данным, значений этих же параметров и целевой функции, найденных при условии, что постоянные b в ограничениях модели принимают свои крайние значения. Таким образом, будет m (по числу ограничений) меняющихся факторов, каждый из которых имеет два уровня feimin и  [c.80]

Для указанных методов применяется абразив в свободном состоянии в составе паст и суспензий. Наивысшие точность и качество поверхностного слоя достигаются при доводке деталей абразивными (алмазными) пастами с намазкой их на притир или притирами, шаржированными зернами пасты. Так, при доводке плоскопараллельных концевых мер на шаржированных притирах (плитах) достигается шероховатость поверхности Rz— 0,05- 0,025 мкм (14-й класс) и отклонения от плоскостности в пределах 0,1—0,2 мкм. Доводка с намазкой притиров абразивными пастами в зависимости от режимов и условий обработки деталей обеспечивает отклонения от. плоскостности и цилинд-ричности доведенных поверхностей до 0,2—3 мкм (диаметром до 400 мм плоских поверхностей и диаметром до 100 мм цилиндрических поверхностей с шероховатостью по параметру Rz 0,l-i-0,03 мкм (13—14-й классы). Кроме указанных методов применяется доводка деталей на абразивных дисках-притирах зернистостью 8—М10 длй Доводки тор-  [c.111]


Стандартизация допусков на выходные параметры изделий Стандартизация решает многие вопросы, связанные с оценкой и повышением надежности изделий и регламентацией методов их производства, эксплуатации и испытания. Особое место с позиций расчета, прогнозирования и достижения необходимого уровня надежности занимают стандарты, которые регламентируют значения выходных параметров материалов, деталей, узлов и машин и устанавливают классы изделий, отличающиеся по показателям качества. Так, установление классов (степеней) точности (квали-тетов) при изготовлении деталей является регламентацией геометрических параметров изделия, классы шероховатости (ГОСТ 2789—73) разделяют все обработанные поверхности на категории по геометрическим параметрам поверхностного слоя. Стандарты и технические условия на различные марки материалов устанавливают предельные значения или допустимый диапазон изменения их механических характеристик — предела прочности, текучести, усталости, относительного удлинения, твердости и др. Стандарты устанавливают также значения для выходных параметров отдельных деталей сопряжений и механизмов (например, запас прочности конструкций, точность вращения подшипников качения), узлов, систем и машин. Так, например, имеются классы точности для металлорежущих станков, регламентированы тяговые усилия и КПД двигателей, уровень вибраций и температур для ряда машин и т. п. Эти нормативы являются необходимым условием для оценки параметрической надежности изделий и определяют исходные данные при прогнозировании поведения машины в различных условиях эксплуатации.  [c.426]

Как видно из таблиц, точностью в наилучшей степени можно управлять при обработке резанием, волнистостью - при алмазноабразивной и отделочно-упрочняющей обработках, параметрами шероховатости - при всех методах обработки и физико-механическими свойствами поверхностного слоя - при отделочно-упрочняющей обработке ППД. Причем при лезвийной обработке основное влияние на точность размеров и формы деталей оказывают точность станка, жесткость технологической системы и материал режущего инструмента на волнистость - жесткость системы и точность станка на параметры шероховатости - подача (при S > 0,1 мм/об) на физико-механические свойства - СОТС, геометрия режущей части инструмента и режимы.  [c.332]

При определенньгх параметрах режима обработки, пластических свойств детали и ее шероховатости возможно увеличение размера детали или восстановление размерной точности, При этом наблюдается снижение величины опорной поверхности профиля шероховатости до средней линии. В общем случае можно считать, что точность размеров обработанной детали зависит от схемы и режимов обработки, точности размеров, формы и качества поверхностного слоя детали, полученных на предшествующем переходе.  [c.515]

Исходными для определения параметров состояния влажного воздуха по / г-диаграмме (рис. 3-22) служат показания влажного и сухого термометров психрометра. В несколько упрощенном виде принцип действия психрометра можно представить так. У поверхности жидкости, находящейся в чашке, куда опущена ткань, окружающая шарик мокрого термометра психрометра, появляется в процессе испарения воды тонкий слой насыщенного воздуха, образующийся в результате вылета из жидкости молекул ее, преодолевших поверхностное натяжение жидкости. Так как дальнейшее проникновение молекул жидкости из этого слоя в воздух затруднено вследствие столкновения их с молекулами воздуха, концентрация молекул жидкости в тонком слое, прилегающем к поверхности жидкости, велика и с достаточной степенью точности можно считать, что воздух в этом слое насыщен водяным паром. Парциальное давление этого пара есть давление насыщенного пара при температуре поверхностного слоя жидкости, показываемом мокрым термометром (при точных расчетах в это показание вносятся поправки). Сухой же термометр показывает температуру ненасыщенного влажного воздух а в помещении. В подробных курсах технической термодинамики доказывается, что энтальпия насыщенного воздуха над поверхностью жидкости и ненасыщенного воздуха в помещении, где находится психрометр, (почти) одинаковы. Отсюда нахождение в / f-диаграмме точки, характеризующей состояние ненасыщенного воздуха в помещении по показаниям психрометра, сводится к следующему. На линии ср = 100% находят точку соответственно показанию мокрого термометра. Из нее проводят линию 1 = = onst. Очевидно, на этой линии находится точка, характеризующая состояние воздуха в помещении, в котором находится психрометр. Взяв пересечение линии I = onst с изотермой сухого термометра, находят искомую точку. По ее координатам и с помощью линий /d-диаграммы находят все параметры воздуха в помещении (см. пример 3-17).  [c.145]

По мнению ученого, к числу обобщенных параметров технологии ковки и штамповки относятся технологичность готовой детали и соответствие ее формы требованиям технологии ковки и штамповки оптимальность механических показателей кованых и штампованных деталей (выбор материала поковки, прочность, износоустойчивость, надежность, живучесть и др.) оптимальность технологических показателей (структура, точность размеров, чистота поверхности поковки, отсутствие дефектного поверхностного слоя, стойкость штампов и др.) оптимальность термомеханического режима пластической обработки давлением (нагрев, род применяемых технологических операций и переходов, характер силовых воздейг ствий машин при штамповке и др.) оптимальность производственных показателей характера производства (серийность, поточность, механизация, автоматизация и др.) оптимальность эксплуатационных технико-экономических показателей службы детали.  [c.82]

Определение остаточных напряжений первого рода проводили по методу Н. Н. Давиденкова. Кольца сглаживались пластиной = мм, г=15 мм) из твердого сплава Т15К6 при следующем режиме обработки 7=400 А у=6,5 м/мин 5 — = 0,2 мм/об Р=200 Н. В отдельных опытах изменялся только тот параметр, влияние которого определялось. Снятие наружных слоев металла осуществлялось электролитическим травлением. Автоматическая регистрация деформаций кольца в зависимости от толщины снятого поверхностного слоя осуществлялась при помощи измерительной установки на базе электронного потенциометра с ленточным самописцем, в котором термометр сопротивления был заменен проволочными тензодатчиками. Такая установка обладает высокой чувствительностью и позволяет регистрировать деформации с точностью до микрометра. Остаточные напряжения в поверхностном слое вычислялись по известным формулам.  [c.62]

Упрочнение цилиндров двигателя УД-2 из незакаленного чугуна СЧ20 после их расточки производилось при I— 1350 А (на ролик) v = 2, м/мин Р=400 Н (на ролик) 5 = 0,9 мм/об охлаждение эмульсией. При этом была достигнута поверхностная твердость Яц== 7500 МПа с глубиной упрочнения 0,2 мм параметр шероховатости обработанной поверхности Яа = = 2,5... 0,63 мкм с расчетом на последующее хонингование. Хонингование при упрочняющих режимах чугуна целесообразно. Поверхностный слой имеет пониженную твердость и износостойкость. Если учесть, что при ЭМО с упрочняющим режимом диаметр цилиндра изменяется в пределах 0,03. .. 0,04 мм, то суммарный припуск на ЭМО и хонингование должен составлять 0,08. .. 0,09 мм. Два цилиндра двигателя УД-2, упрочненные с указанным выше режимом с установкой колец серийного производства, проходили стендовые испытания в течение 600 ч по установленной методике. Измерения гильз, колец и поршневых канавок производились через каждые 200 ч работы с точностью до 0,005 мм. Средние значения износа упрочненных и неупроч-ненных цилиндров приведены в табл. 17.  [c.99]


Экономически целесообразно применять методы обработки, при которых достигается наименьшая технологическая себестоимость, поэтому в блоке 7 (см. рис. 3.3.3) рассчитывается технологическая себестоимость для выбранных методов обработки, которые обеспечивают заданные параметры состо шия поверхностного слоя и точность размеров детали при определенных условиях обработки. Но для этого необходимо знать функциональную взаимосвязь погрешиости размеров и параметров состояния поверхностного слоя деталей с условиями их обработки (блок 4). Эта взаимосвязь может быть представлена в виде теоретических и эмпирических уравнений или таблиц.  [c.312]

Все это говорит о том, что одной из основных задач в обеспечении качества поверхностного слоя деталей при механической обработке является строжайший контроль за соблюдением теэшологической дисциплины. Для устранения влияния случайных отклонений условий механической обработки на качество изготовляемых деталей с успехом используют различные системы адаптивного управления технологическими процессами. Эти системы базируются на получении информадаи, характеризующей истинное состояние процесса (контроль сил резания, температуры, силы тока и мощности двигателей, давления в гидроцилиндрах, точности обрабатываемого размера и параметров шероховатости и др.), и соответствующих оперативных, как правило, автоматических изменениях режимов резания.  [c.333]

На рис. 50 приведена зависимость между интенсивностью износа меди при трении в различных смазках и физической шириной рентгеновских линий поверхностных слоев меди толщиной в доли микрометра. Можно видеть, что полученные результаты при трении в пластичных смазках подтверждают линейную связь Ig I и Р(/ /), выявленную ранее при трении в жидких смазочных средах. Линейная взаимосвязь этих двух параметров не вызывает сомнений с точки зрения как экспериментальных данных, так и механизма физико-химических процессов в зоне контактного взаимодействия в присутствии смазочных сред. Однако разброс экспериментальных точек значительный, несмотря на высокую для данных условий испытаний точность определения I и, особенно, P(ftAi).  [c.132]

Для изготовления отверстий применяют одноимпульсное и многоимпульсное прошивание. При oднoи шyль нoй обработке отверстие формируется за один и.мпульс и имеет глубину не более 5 мм точность диаметра — 9-И-й квалитет, продольных размеров — 11 — 13-й квалитет шероховатость поверхности Кй = 2,50,32 мкм глубина измененного поверхностного слоя 0,02 — 0,1 мм. Геометрия отверстия зависит от энергетических параметров луча, положения фокуса оптической системы относительно поверхности заготовки, фокусного расстояния этой системы и теплофизических свойств обрабатываемого материала. Отверстия имеют почти цилиндрическую форму и наибольшую глубину при положении фокуса лазерного луча на поверхности заготовки. В остальных случаях (фокус выше или ниже поверхности заготовки) наблюдается изменение формы продольного сечения отверстия от конической до параболической.  [c.853]

Каждый из указанных методов определенным образом влияет на износостойкость, статическую и усталостную прочность и физико-механические свойства деталей, вызывает наклеп и остаточные напряжения их поверхностей. К показателям, характеризующим состояние поверхности, относятся прежде всего геометрические параметры точность, макрогеометрия, волнистость, шероховатость, направление штрихов обработки и т. д. Именно эти показатели влияют на свойства поверхностей деталей и в первую очередь на их износостойкость. Так, между макрогеометрией поверхности и интенсивностью износа в определенных условиях эксплуатации существуют определенные зависимости. В этих зависимостях имеются интервалы, обеспечивающие наименьший износ, которому соответствует оптимальное значение шероховатости. При этом необходимо стремиться к тому, чтобы макрогеометрия поверхности была одинаковой во всех направлениях. Это относится как к подвижным, так и неподвижным соединениям. Поэтому задачей технологов-ремонтников является разработка и внедрение таких технологических процессов, которые обеспечивали бы фюрмирование поверхностных слоев с необходимыми физико-механическими и геометрическими показателями.  [c.89]

Исходными для определения параметров состояния влажного воздуха по / -диаграмме (рис. 3-24) служат показания влажного и сухого термометров психрометра. В несколько упрощенном виде принцип действия психрометра можно представить так. У поверхности жидкости, находящейся в чашке, куда опущена ткань, окружающая шарик мокрого термометра психрометра, появляется в процессе испарения водьи тонкий слой насыщенного воздуха, образующийся в результате вылета из жидкости ее молекул, преодолевших поверхностное натяжение жидко-проникновение молекул жидко-затруднено вследствие воздуха, концентрация. молекул жидкости в тонком слое, -прилегающем к поверхности жидкости, велика, и с достаточной степенью точности можно считать, что воздух в этом слое н а-с ы щ е н водяным паром. Парциальное давление этого пара есть давление насыщенного пара при температуре поверхностного слоя жидкости, показываемое мокрым термометром (при точных расчетах в это показание вносятся поправки). Сухой же термометр показывает температуру ненасыщенного влажного воздуха в помещении. В подробных курсах технической термодинамики доказывается, что теплосодержания насыщенного воздуха над поверхностью жидкости и ненасыщенного воздуха в помещении, где находится психрометр (почти), одинаковы. Отсюда нахождение в / -диаграмме точки, характери-156  [c.156]

Деформирующе-режуще-выглаживающие протяжки применяются для необработанных отверстий. К точности и качеству протяжных отверстий предъявляются повышенные требования. Выглаживающая часть осуществляет поверхностное деформирование, что способствует получению точности по 7—6-му квалитету и параметра шероховатости поверхности а=0,8ч-0,16 мкм. При это№ достигается упрочнение поверхностного слоя, и в нем создаются сжимающие напряжения.  [c.46]


Смотреть страницы где упоминается термин Точность и параметры поверхностного слоя при : [c.551]    [c.153]    [c.353]    [c.153]    [c.141]    [c.148]   
Справочник технолога-машиностроителя Т2 (2003) -- [ c.0 ]



ПОИСК



Параметр слоев

Поверхностный слой и его параметры

Слой поверхностный

Точности параметры



© 2025 Mash-xxl.info Реклама на сайте