Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интенсивность изнашивания пар трения

Влияние смазки. Сильное влияние смазки на интенсивность изнашивания пар трения общеизвестно [51 90, 229, 246]. При сухом трении имеет место наибольшая скорость изнашивания, так как здесь создаются условия для возникновения молекулярного взаимодействия и таких явлений, как повышение температуры, концентрация давлений на отдельных участках, что интенсифицирует процесс разрушения поверхностных слоев. При работе деталей машин стремятся избежать сухого трения.  [c.247]


Рис. 7.13. Зависимость интенсивности изнашивания пары трения сталь 045 — сталь С45 при давлении 1 МПа от скорости скольжения при относительной влажности воздуха 5% (кривая 1) и БО % (кривая 2) Рис. 7.13. Зависимость интенсивности <a href="/info/33866">изнашивания пары трения</a> сталь 045 — сталь С45 при давлении 1 МПа от <a href="/info/2003">скорости скольжения</a> при <a href="/info/30697">относительной влажности воздуха</a> 5% (кривая 1) и БО % (кривая 2)
Эксплуатация контактных торцовых уплотнений в кипящих жидкостях (горячей воде, легких углеводородах, аммиаке) обычно сопровождается повышенными утечками и интенсивным изнашиванием пары трения. При работе уплотнений часто наблюдаются хлопки и вибрация, в результате которых происходят периодические выбросы рабочей жидкости в виде парожидкостной смеси. Нестабильность - характерная особенность работы торцовых уплотнений в кипящих жидкостях. Это явление возникает из-за вскипания жидкостной пленки между уплотнительными поверхностями, что вызывает нарушение режима смазки и перегрев пары трения. В результате скопления паров и температурных деформаций уплотнительных колец происходит раскрытие стыка. Возникают повышенные утечки, охлаждающие пару трения. Далее уплотнительный стык смыкается и на короткое время восстанавливается нормальный режим смазки и герметичность уплотнения. Затем процесс повторяется.  [c.339]

Наиболее интенсивное изнашивание пар трения происходит в период пуска следовательно, долговечность уплотнений, работающих на непрерывном режиме, значительно выше, чем при кратковременно-повторном режиме работы.  [c.65]

Рис. 2.12. Области изменения энергетической интенсивности изнашивания пар трения для материала Рис. 2.12. Области изменения энергетической <a href="/info/33873">интенсивности изнашивания</a> пар трения для материала
В качестве мягких металлов применяют порошки меди, олова, свинца, их сплавов (например, введение висмута, свинца, олова в смазку Литол-24 снижает интенсивность изнашивания пары трения в 8 - 10 раз).  [c.236]


ТЕМПЕРАТУРНОЕ ПОЛЕ, КОЭФФИЦИЕНТ ТРЕНИЯ И ИНТЕНСИВНОСТЬ ИЗНАШИВАНИЯ ПАР ТРЕНИЯ ПРИ МАЛОМ И БОЛЬШОМ КОЭФФИЦИЕНТАХ ВЗАИМНОГО ПЕРЕКРЫТИЯ  [c.251]

Изменение величин скорости скольжения, удельного давления, частоты и амплитуды колебаний трущихся пар приводит к изменению интенсивности образования и развития различных физических, химических и механических процессов, происходящих при трении и изнашивании в поверхностных объемах металлов, что обусловливает характер и интенсивность изнашивания поверхностей трения. В зависимости от величины и характера удельного давления в поверхностных объемах трущихся тел возникают и развиваются с различной интенсивностью пластические деформации металлов, которые способствуют развитию явлений схватывания или же процесса окисления металлов [15—20]. Происходит изменение площади фактического контакта, глубины слоев металла, принимающих участие в процессах трения и изнашивания, и т. п. [14, 21].  [c.27]

В качестве добавок в смазочный материал использовали неорганические соли металлов. Некоторые из них (соли олова, меди, алюминия, палладия и др.) обеспечили очень низкий коэффициент трения и интенсивность изнашивания пары сталь—сталь при трении в глицерине. Этот факт иллюстрирует перспективы дальнейшего изучения металлоплакирующих смазочных материалов, содержащих не только дисперсные металлы, но и их соединения [45].  [c.71]

Методика определения интенсивности изнашивания в этих условиях приведена в гл. 1 (см. с. 37). Линейная интегральная интенсивность изнашивания вычисляется в данных условиях по (117) гл. 1. Интенсивность изнашивания поверхностей трения отдельных витков пары будет неодинакова вследствие неравномерности распределения осевых усилий по виткам. Наиболее интенсивно при реверсивном движении будут изнашиваться периферийные витки гайки. Неравномерность изнашивания приведет к изменению закономерности перераспределения осевых усилий по виткам. Это будет способствовать более равномерному изнашиванию витков.  [c.252]

Введение в базовые вакуумные масла присадки ПИК-01 , предназначенной для повышения износостойкости и снижения потерь на трение фрикционных пар, практически устраняет влияние вязкости на коэффициент трения и интенсивность изнашивания пары алюминиевый сплав-сталь в исследованном диапазоне динамической вязкости смазочного материала. Для выяснения механизма высокой износостойкости и низкого коэффициента трения при работе пары алюминиевый сплав-сталь в масле с  [c.68]

Для обеспечения названных разнообразных технических требований и условий эксплуатации материалы трибосистем должны удовлетворять определенным требованиям. Одним из главных требований к материалу пары трения является достаточная износостойкость в заданных условиях работы, которая характеризуется интенсивностью изнашивания - отношением величины линейного износа к пути трения = Ui,IL. Износостойкость материалов по интенсивности изнашивания делится на классы  [c.12]

Выражения (4.36) и (4.37) представляют термодинамическую (энтропийную) модель металлополимерной трибосистемы, рассматриваемой в качестве открытой термодинамической системы. Известно, что имеющиеся в арсенале конструкторов расчетные зависимости на износ н долговечность носят эмпирический характер и не учитывают действительную картину и природу изнашивания поверхностей трения. Предлагаемая же модель открывает принципиальную возможность оценить интенсивность изнашивания металлополимерной пары трения на этапе проектирования машины на основе закономерностей физико-хи-мических процессов в зоне трения и физических свойств изнашиваемого материала. Для этого необходимо записать уравнения потоков энергии и вещества для каждого слагаемого подынтегрального выражения согласно физическому закону соответствующего эффекта (теплового, электрического, диффузионного) и решить эти уравнения при соответствующих начальных и граничных условиях, а также, используя выражение (4,32), определить А. для выбранного композиционного материала, Однако задача получения аналитического выражения для соответствующих эффектов требует проведения сложных теоретических и экспериментальных исследований и составляет одну из актуальных задач трибологии на ближайшие десятилетия.  [c.121]


Износ машин, работающих в условиях абразивной среды. Такие технологические и транспортные машины как сельскохозяйственные, дорожно-строительные, горные, нефтедобывающие и другие работают в контакте со средой, обладающей абразивными свойствами. Исследования износа этих машин [77, 1301 показали чрезвычайную его интенсивность и ярко выраженный абразивный характер. При этом состав среды (почвы, породы, грунта) оказывает существенное влияние как на скорость изнашивания, так и на методы повышения износостойкости пар трения. Например, исследование изнашивающей способности почв показало [191], что она зависит от состава (определяющее значение имеет наличие Б фракционном составе кварцевых частиц) и от влажности. Например, затупление лемеха плуга при обработке легких почв, но при малой их влажности может быть не меньше, чем более тяжелых, но с высокой влажностью.  [c.367]

Коэффициент трения, интенсивность изнашивания и контактная жесткость стыков в значительной мере зависят от степени шероховатости поверхностей. Минимум на кривых зависимости коэффициента трения и интенсивности изнашивания от степени шеро.ховатости объясняется двойственной молекулярно-механической природой трения и механизмом усталостного изнашивания. Минимальные значения коэффициента трения и интенсивности изнашивания материала соответствуют равновесной шероховатости, которая воспроизводится в процессе длительной эксплуатации. Предложенный расчет позволяет определить комплексный критерий Д, соответствующий равновесной шероховатости, по известным физико-механических характеристикам пар трения и приложенной нагрузке.  [c.102]

Такое представление ресурса дает возможность определять границы периодов интенсивности изнашивания в интервале предельного допуска износа, производить подразделение ресурса в соответствии с терминологией ГОСТ 13377—75 и, что особенно важно, более обоснованно производить синтез пар трения механических систем в отношении их надежности и долговечности с учетом предъявляемых к ним требований. В качестве границы полного ресурса примем точку перегиба кривой износостойкости А с координатами Xj и из условия  [c.203]

На кривой интенсивности изнашивания деталей, работающих в паре трения (рис. 6.1), можно выделить три стадии 1 — приработка, 2—установившееся изнашивание, 3 — ускоренное изнашивание. Первая стадия характеризуется ростом интенсивности изнашивания, что объясняется малой площадью контакта поверхности из-за макро-и микронеровностей и большими контактными нагрузками вследствие этого. В конце стадии приработки устанавливается равновесная, стабильная шероховатость поверхности. Одновременно происходят структурные превращения в поверхностном слое с образованием вторичных структур. В стадии установившегося изнашивания интенсивность изнашивания невелика и постоянна по величине. При ухудшении условий работы может наблюдаться третья стадия — ускоренное изнашивание. В реальных условиях эксплуатации какая-либо из стадий может отсутствовать.  [c.92]

Для пары трения диск—колодка рассчитывается весовая интенсивность изнашивания, в кг-см за 1000 м пути трения = = 10 -АС//(5к ), где АС/ — весовой износ, кг — площадь контакта, см Ь — путь трения, м. Величина износа АС/ определяется взвешиванием до и после испытаний на лабораторных аналитических весах.  [c.99]

При испытаниях покрытий на парах трения вал — втулка , и диск—диск определяется относительная интенсивность изнашивания А у = Д /д/А / , где АС/д — весовой износ образца с исследуемым покрытием АГ/ — весовой износ контрольного образца (например, изготовленного из термообработанной конструкционной стали). Величину износа следует замерять на однотипных образцах пар при одинаковом пути трения. При К , < 1 износостойкость исследуемого покрытия выше, чем контрольного материала.  [c.100]

Определение коэффициента трения и интенсивности изнашивания образцов с покрытием, работающих в паре трения при фрикционном разогреве, описано в ГОСТе [1701. Стандарт [171] устанавливает методику оценки коэффициента трения скольжения материалов и покрытий для узлов трения при ударе. Методы оценки противозадирных свойств металлических покрытий в сочетании со смазочными материалами регламентированы стандартом [172]. Расчет прочности адгезионной связи, возникающей при трении, нужно проводить в соответствии с [173].  [c.104]

Качество покрытия оценивается прежде всего специальными свойствами. Для деталей с покрытиями, работающих в парах трения или в условиях ударного воздействия абразивных частиц, основными оценочными критериями являются скорость и интенсивность изнашивания. Если изделие работает при знакопеременных нагрузках, то важно знать влияние покрытия на характеристики усталостной прочности и т. д.  [c.134]

Проведенные исследования изнашивания металлического эле мента тормозного устройства подъемно-транспортных машин [11] показали, что изнашивание поверхности трения тормозного шкива в ряде случаев происходит весьма интенсивно, хотя твердость этой поверхности значительно превышает твердость поверхности трения фрикционного материала, измеренную перед началом опыта. Это может быть объяснено, во-первых, наличием абразивных частиц, имеющихся во фрикционном материале (чаще всего окиси кремния) или попавших на поверхность трения извне во-вторых, в процессе трения в результате комплексного влияния нормального и тангенциального усилий, скорости и температуры поверхностные слои фрикционного материала и металла преобразуются и приобретают свойства, резко отличные от свойств обоих элементов трущейся пары, имевшихся у них до участия в процессе трения. При нагревании в процессе работы происходит изменение физико-механических свойств металла и фрикционного материала с увеличением температуры предел прочности элементов пары уменьшается (фиг. 348).  [c.577]


Рассмотрим другой пример. В морскую воду поместили пару трения, которая до этого работала в пресной воде. Повышенная агрессивность морской воды обусловит активизацию коррозионного процесса. Это сместит химическое равновесие в сторону образования избыточного количества окислов и увеличения интенсивности износа металла. Результатом этого явится рост деформации вставки, контактного давления на ее поверхности и интенсивности изнашивания. Увеличение количества продуктов изнашивания вставок, переносимого в зону трения металлов, снизит количество образующихся окислов, что замедлит износ медного сплава. Равновесный режим изнашивания установится вновь.  [c.47]

Работа пары трения бронза—сталь при удельных нагрузках и температурах выше критических характеризуется высокой интенсивностью изнашивания бронзовых втулок, схватыванием и глубинным вырыванием частиц бронзы, намазыванием их на рабочие поверхности трения.  [c.183]

На рис. 6.2 приведена зависимость интенсивности изнашивания пары сталь 45 — сталь 45 при трении без смазочного материала и давлении 1 МПа от скорости скольжения, полученная Б. И. Костед-ким, который объясняет образование различных видов изнашивания стали 45 в зависимости от скорости скольжения различием количества кислорода, насыщающего при трении поверхностные слои. В области 2 его количество возрастает в 30. .. 100 раз (0,52 % Оз) по сравнению с ис содньщ содержанием, равным 0,019 %. В об-  [c.119]

Режим жидкостной смазки характеризуется отсутствием контактов микронеровностей и практически нулевой интенсивностью изнашивания. Однако при этом возможны местное эрозионное изнашивание пары трения струей жидкости, интенсивность которого резко увеличивается при больших (10 МПа и более) перепадах давлений, а также юнашивание эрозионного типец вызванное высокими (свыше 50 м/с) скоростями скольжения в парах. Эрозионному изнашиванию главным образом подвержены кольца пары трения, изготовленные из сравнительно мягких углеграфитовых материалов. Наличие на рабочих поверхностях колец смазочных канавок и других отклонений от плоской формы интенсифицирует эрозионное изнашивание в этих местах.  [c.263]

Исследования антифрикционных свойств и изнашивания пар трения проводились на реконструированной машине трения МИ-Ш при скорости скольжения 0,7 м/с и смазке дистиллированной водой. Трение образцов осуществлялось по схеме Амслера вращающийся ролик диаметром 40 мм, шириной 10 мм с наплавленной наружной поверхностью по неподвижному образцу— плоской колодочке размерами 10X10X23 мм. Наплавка производилась на сталь 12Х18Н10Т несколькими слоями. Образец термообрабатывался, а наплавленный металл шлифовался до толщины 5—7 мм. Перед испытаниями образцы прирабатывались для образования лунки контакта на плоской колодочке площадью более 0,2 см под нагрузкой 1,5 кгс. Зависимость интенсивности изнашивания /, и коэффициента трения от давления р испытуемых пар трения получали при ступенчатом увеличении нагрузки до предельного его значения (критической точки), где наблюдалось резкое возрастание износа и коэффициента трения (зона пластических деформаций). В этом случае испытания при постоянной нагрузке продолжали в течение 1 ч до стабильного значения момента трения, производя замеры через каждые 10 мин. После этих испытаний, используя полученную лунку на плоском образце, по схеме ролик — вкладыш при постоянном давлении 10 кгс/см производились сравнительные испытания образцов в течение 5 ч. Результаты изнашивания исследованных пар трения даны иа рис. 84 и 85. Из рисунков видно, что более высокие антифрикционные свойства и износостойкость (в 2—10 раз) имеют пары трения стеллит — сталь (кривые 4, 5, 6) в сравнении с парами сталь — сталь (кривые 1, 2, 3). При этом коэффициент трения составляет 0,1—0,25 вместо 0,3—0,6.  [c.168]

На рисунке представлены зависимости коэффициента трения и интенсивности изнашивания пары на пути трения 2000 м при скорости скольжения 1 м/с и удельной нагрузке 8 МПа. Оценивалось влияние вязкости вакуумных масел ВМ-1,3,4,б (ГОСТ 5.671-70), в состав которых входят узкие нафтено-парафиновые фракции. Они практически не содержат ароматических углеводородов, но различаются по динамической вязкости в диапазоне (0,01...0,07) Нс/м . Рассмотрение данных, представленных на рисунке, позволяет отметить, что вязкость базового масла оказывает большое влияние на трение и изнашивание пары алюминиевый сплав (АМ07-3)-сталь (18ХГТ) . Так, при работе пары колодка-ролик в масле ВМ-3, динамическая вязкость которого 0,01 Нс/м , коэффициент трения имеет значение 0,075, повышение вязкости масла до (0,06..,0,07) H /м ведет к уменьшению коэффициента трения более чем в 3 раза. Аналогичные данные получены в результате выполненных экспериментов по влиянию вязкости смазочного материала на интенсивность изнашивания узла трения. Если интенсивность изнашивания пары алюминиевый сплав-сталь при использовании масла ВМ-3 соответствует величине 740-10 кг/мм , то повышение вязкости вакуумного масла до (0,05,..0,07) Нс/м ведет к снижению интенсивности изнашивания пары колодка-ролик более чем в 2 раза.  [c.67]

При полном анализе трибологических процессов в числе выходных параметров ТС учитывается такой важный параметр, как коэффициент трения. Он является результатом комплекса физико-химических процессов, сопровождающих трение двух тел, поэтому его нельзя отнести к какой-либо одной детали, одному материалу. Аналогично нельзя отнести к одному элементу ТС характеристики износостойкости (скорость изнапшвания, интенсивность изнашивания), так как они зависят от свойств всех элементов трибосистемы. Согласно современр1ым положениям трибологии коэффициент трения и интенсивность изнашивания являются нелинейными функциями физико-механических свойств материалов пары трения, условий работы (вид смазки, свойства и температура окружающей среды) и режимов трения (скорость относительного движения, контактное давление).  [c.8]

Многообразие применяемых материалов и условий эксплуатации трущихся деталей предопределяет чрезвычайное многообразие видов изнашивания и разрушения поверхностей. Совокупность физико-хими-ческих процессов при трении определяет вид изнашивания и его интенсивность. Вид изнашивания и повреждения не являются характерными именно для данной пары трения, а зависят от условий работы. Изменение условий работы (вид смазки, скорость скольжения, температура) может приводить к изменению ведущего вида изнашивания поверхностей. Так, увеличение скорости скольжения вызывает повышение температуры и ускорение окислительных процессов, поэтому до некоторой скорости скольжения может наблюдаться схватывание поверхностей, а по достижении критической скорости возможен переход к окислительному изнашиванию вследствие увеличения скорости образования окисных пленок.  [c.122]


Рассмотренный пример позволяет лучше понять следующие об1дие закономерности процесса коррозионно-механического изнашивания. Агрессивные среды, разрыхляя поверхности трения, усиливают процесс изнашивания температура в зоне трения значительно активизирует процесс коррозии и тем самым интенсифицирует процесс изнашивания. Увеличение контактного давления и скорости скольжения повышает температуру на поверхности трения и интенсивность изнашивания. С увеличением нагрузки возрастает напряжение в областях фактического контакта, что может привести к пластическому взаимодействию выступов шероховатых поверхностей и даже к схватыванию или микрорезанию. Для снижения возможности развития таких явлений необходимо разрабатывать узлы трении с минимальными нагрузками в паре и применять материалы с высокой твердостью.  [c.138]

Интенсивность изнашивания деталей, работающих в агрессивных средах, резко возрастает при наличии абразивных частиц на поверхности трения или в потоке среды, омывающей рабочие поверхности. Во избежание этого необходимо принимать меры для удаления абразивных частиц из агрессивной среды, снижать нагрузку в паре трения, уменьшить скорость и угол атаки потока, несущего абразивные частицы. Коррозионная активность может быть снижена путем введения добавок в среду ингибиторов и снижения темггературы.  [c.138]

Ограничение скорости изнашивания каждого основного сопряжения машины и назначение класса износостойкости имеет пер-востепенное значение для создания надежных машин (см. гл. 5, п. 5). Существуют разнообразные методы и средства для повышения износостойкости любых пар трения, однако надо знать, какие пары в каких пределах должны обеспечивать заданный диапазон скоростей или интенсивностей изнашивания. Для создания износостойких машин необходимо также регламентировать те показатели изношенного сопряжения и те условия эксплуатации, которые определяют срок службы (наработку) изделия до отказа. Это в первую очередь относится к предельно допустимым износам (см. гл. 7, п. 3) и к условиям эксплуатации — нагрузкам, скоростям, температуре, к характеристикам окружаюш.ей среды (см. гл. 12, п. 1). Только целенаправленные мероприятия по повышению износостойкости дадут наибольший эффект. Поэтому применение для этой цели разнообразных методов должно сочетаться с расчетом и анализом износа основных сопряжений, прогнозированием поведения изношенной машины, регламентацией скорости изнашивания. Еще на стадии проектирования должны быть заложены основы для создания износостойких надежных машин, сохраняющих работоспособность в различных условиях эксплуатации. Надежность, заложенная при проектировании машины, должна быть обеспечена при ее производстве и эксплуатации.  [c.403]

Аналогичные результаты получены при исследовании влияния шероховатости металлических поверхностей на трение и изнашивание П. Т. Ф. Е. (тефлона) [136]. Показано, что состояние поверхности образцов из тефлона практически не оказывает влияния на коэффициент трения, поскольку тефлон быстро прирабатывается к сопряженному металлическому образцу. Зависимость коэффициента трения и величины весового износа тефлона от шероховатости металлических поверхностей имеет минимум, причем для обеих зависимостей положение минимума соответствует оптимальному значению параметра в пределах от 0,2 до 4 мкм (удельное давление 300 кг1см , скорость 1 м1сек). Таким образом, для пар металл — полимер так же, как для пар металл — металл, зависимость коэффициента трения и интенсивности изнашивания от степени шероховатости металлического контртела имеет минимум в некотором диапазоне изменения степени шероховатости.  [c.9]

Результаты экспериментов показывают, что исходная шероховатость поверхности контртела оказывает существенное влияние на интенсивность изнашивания и величину коэффициента трения. Интенсивность изнашивания зависит от величины комплексного параметра шероховатости А. Так, для полированных поверхностей до У9—10 получены наименьшие интенсивность изнашивания и коэффициент трения, несмотря на разные высоты неровностей, но почти одинаковые величины А. Расчетная величина комплексной характеристики соответствует экспериментальным параметрам шероховатости поверхности контртела, при которых получены наименьшая интенсивность изнашивания и минимальный коэффициент трения для подшипника из метал-лофторопласта, работающего в паре с металлическим валом из стали 45 при установившемся режиме трения.  [c.101]

Коэффициент трения накладок, уже обгоревших в процессе работы, значительно выше, чем у нового сырого материала. Поэтому, чтобы получить с первых же торможений высокое значение коэффициента трения, следует провести термообработку материала Ретинакс , заключающуюся в нагревании поверхности трения материала до 400—420° С (т. е. до начала выгорания легких составляющих фенолформальдегидной смолы) без свободного доступа окисляющей среды (например, в песке) до прекращения обильного дымовыделения [193]. Хотя Ретинакс при нагреве выше 450° С и не сгорает, но интенсивность его изнашивания резко возрастает. И все же в тормозных узлах с температурой 1000, 600 и 400° С износостойкость колодок из материала Ретинакс выше, чем износостойкость других видов фрикционных материалов, соответственно в 3, 6 и 10 раз. Прирабатываемость колодок из Ретинакса несколько затруднена вследствие его высокой износоустойчивости и изменения фрикционных свойств неработавшего материала под действием температуры (в связи с падением коэффициента трения). Поэтому в случаях применения указанного материала необходимо добиваться возможно более полного прилегания колодок к тормозному шкиву, протачивая для этого шкив и колодки. Для получения оптимальной прира-батываемости пары трения и получения максимальных начальных значений коэффициента трения рекомендуется [181] наносить на поверхность трения металлического элемента пары мягкий теплопроводный слой. В настоящее время исследовательские работы по изучению свойств Ретинакса широко ведутся в различных областях машиностроения и диапазон тормозных устройств с использованием этого материала непрерывно расширяется. Широкая экспериментальная проверка Ретинакса на тормозах шагающих экскаваторов, где температура нагрева достигает 360° С при давлении 7—12 кПсм и где за одно торможение выделяется до 660 ккал (работа торможения примерно равна 2,6-10 кГм), показала значительное преимущество его перед другими существующими типами фрикционных материалов как по износоустойчивости, так и по стабильности величины коэффициента трения. Поверхности трения шкивов тормозных устройств в процессе работы полировались без заметных царапин или задиров. Срок службы тормозных накладок из Ретинакса оказался в 10—13 раз выше, чем из других материалов. Хорошую работоспособность Ретинакс показал также в тормозах буровых лебедок [194], где температура достигает 600° С при давлении р = 6ч-10 кГ/см . В этих тормозах износостойкость материала Ретинакс оказалась в 6—7 раз выше, чем у асбокаучукового материала 6КХ-1. Срок службы материала Ретинакс в тормозах грузовых автомобилей оказался в 4—7 раз выше, чем у других асбофрикционных композиций. Проведенные лабораторные испытания Ретинакса в муфтах и тормозах кузнечно-прессового оборудования [192] (при р = 10ч-13 кГ/см 5.%  [c.536]

Анализ состояния поверхностей трьния, работавших при удельных нагрузках, не превышающих критических, показал, что поверхности трения бронзовых втулок имеют высокий класс шероховатости (9—10-й), а рабочие участки втулок, испытывающие нагрузку, покрыты тонким слоем меди. На стальных поверхностях валиков наличие меди наблюдалось только на кадмированных поверхностях, на хромированные поверхности медь не переносилась, что согласуется с результатами исследований в работе [12]. При этих удельных нагрузках пара трения бронза—сталь имеет малую интенсивность изнашивания трущихся деталей, причем наблюдается износ только бронзовых подшипниковых втулок, стальные валики при этом практически не изнашиваются.  [c.183]


Смотреть страницы где упоминается термин Интенсивность изнашивания пар трения : [c.263]    [c.293]    [c.71]    [c.272]    [c.67]    [c.71]    [c.100]    [c.128]    [c.326]    [c.326]    [c.487]    [c.100]    [c.60]    [c.77]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.293 ]



ПОИСК



Влияние механических свойств материала и внешних условий трения на интенсивность абразивного изнашивания

И износостойкость материалов пар трени интенсивность изнашивания

Изнашивание

Изнашивания интенсивность

Интенсивность изнашивания — Влияние давления, температуры и скорости скольжения 223, 234, 239 — Влияние номинальной площади трения 192 — Влияние температуры 189, 190, 259, 282—284 — Определение 188, 189 — Расчет

Коэффициенты трения и интенсивности изнашивания

Методы определения триботехнических характеристик, необходимых для расчета сил трения и интенсивностей изнашивания

Расчет коэффициента внешнего трения, интенсивности изнашивания и контактной жесткости при упругом контакте

Температурное поле, коэффициент трения и интенсивность изнашивания пар трения при малом и большом коэффициентах взаимного перекрытия



© 2025 Mash-xxl.info Реклама на сайте