Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

И износостойкость материалов пар трени интенсивность изнашивания

Интенсивность изнашивания, а следовательно, и срок службы детали зависят от давления, скорости скольжения, коэффициента трения и износостойкости материала. Для уменьшения изнашивания широко используют смазку трущихся поверхностей и защиту от загрязнения, применяют антифрикционные материалы, специальные виды химико-термической обработки поверхностей и т. д.  [c.6]

ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ ИНТЕНСИВНОСТИ ИЗНАШИВАНИЯ. Сопоставляя характер кривых на рис. 9.14 и рис. 9.16, можно отметить, что кривые износостойкости В (Гск) имеют максимумы для тех скоростей скольжения, при которых интенсивность изнащивания имеет минимальные значения. Подобная взаимосвязь предопределяет также характер функциональной зависимости стойкости резца от скорости резания T(v) и позволяет предполагать, что стойкость имеет максимум при той же скорости резания, при которой достигаются максимальная износостойкость и минимальная интенсивность изнашивания трущейся пары обрабатываемый материал — инструментальный материал. Наличие такой связи позволяет путем физического моделирования явлений трения и износа, имеющих место при резании, значительно уменьшить трудоемкость экспериментальных стойкостных исследований, а также дать физическое обоснование изнашиванию инструмента при резании.  [c.134]


Свойство материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости или интенсивности изнашивания, называют износостойкостью. На износостойкость влияют твердость материалов, их упругие свойства, режим работы (нагрузка, скорость, температура), внешние условия (смазка, окружающая среда), конструктивные особенности узла трения.  [c.246]

Износостойкость - свойство материала оказывать сопротивление изнашиванию, оцениваемое величиной, обратной интенсивности изнашивания или скорости изнашивания. Величина износа деталей должна быть ограничена некоторым предельным значением в зависимости от конструкции узла трения и условий эксплуатации. Предельным износом детали называют износ, при котором дальнейшая эксплуатация становится невозможной вследствие выхода детали (узла) из строя, неэкономичной или недопустимой вследствие снижения надежности механизма или всего изделия.  [c.79]

Специфичным для многих технологических машин является влияние на интенсивность изнашивания отходов технологического процесса. Так, в станках на процесс изнашивания влияет попадание в узлы трения частиц обрабатываемого материала (например, чугунной пыли) или продуктов правки и разрушения шлифовального круга. Для металлургического оборудования нежелательно попадание в узлы трения окалины, в пищевых машинах кондитерской промышленности отрицательно влияет на износостойкость попадание в узлы трения сахаристых веществ и т. д. С точки зрения восстановления утраченной работоспособности для технологического оборудования характерна возможность осуществления ремонта и технического обслуживания в любые промежутки времени. Чтобы потери времени и средств при этом были минимальны требуется рациональное построение системы ремонта (см. гл, 12, п. 2).  [c.366]

Износостойкость — свойство материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной обратной интенсивности (или скорости) изнашивания.  [c.239]

Изнашивание — это процесс разрушения материала и отделения его от поверхности, твердого тела и (или) накопления остаточной деформации при трении, проявляющийся в постепенном изменении размеров и (или) формы тела. Износ — результат изнашивания, определяемый в единицах длины, объема, массы и др. Износостойкость — свойство материалов оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости или интенсивности изнашивания. Скорость изнашивания выражается отношением значения износа к интерва.лу времени, в течение которого он возник. Интенсивность изнашивания — это отношение значения износа к пути, на котором происходило изнашивание,, или к объему затраченной работы [155]  [c.92]

При испытаниях покрытий на парах трения вал — втулка , и диск—диск определяется относительная интенсивность изнашивания А у = Д /д/А / , где АС/д — весовой износ образца с исследуемым покрытием АГ/ — весовой износ контрольного образца (например, изготовленного из термообработанной конструкционной стали). Величину износа следует замерять на однотипных образцах пар при одинаковом пути трения. При К , < 1 износостойкость исследуемого покрытия выше, чем контрольного материала.  [c.100]


Связь трения и износа с неровностями поверхности. Современная молекулярно-механическая теория трения объясняет силу сухого (и граничного) трения скольжения образованием и разрушением адгезионных мостиков холодной сварки контактирующих участков шероховатой поверхности и зацеплением (и внедрением) неровностей 110, 40]. Трение обусловлено объемным деформированием материала и преодолением межмолекулярных связей, возникающих между сближенными участками трущихся поверхностей. При этом износ протекает в виде отделения частиц за счет многократного изменения напряжения и деформации на пятнах фактического контакта при внедрении неровностей истирающей поверхности в истираемую поверхность. Во многих случаях износ имеет усталостный характер растрескивания поверхностного слоя под влиянием повторных механических и термических напряжений, соединения трещин на некоторой глубине и отделения материала от изнашиваемого тела. Интенсивность изнашивания зависит от величины фактического контакта и напряженного состояния изнашиваемого тела, которые в свою очередь в сильной степени зависят от размеров и формы неровностей и, в частности, от радиусов закругления выступов. В обычных условиях истирающая поверхность является существенно более жесткой и шероховатой по сравнению с той, износ которой определяется, и ее неровности оказываются статистически стабильными при установившемся режиме трения. Таким образом, в отношении износостойкости деталей неровности их поверхностей имеют первостепенное значение.  [c.46]

Надо иметь в виду, что установленная зависимость коэффициента трения от температуры и температурного градиента будет справедлива лишь в том случае, если фрикционный материал имеет малую теплопроводность и в зоне трения возникают температуры, достаточные для изменения физико-механических свойств трущихся тел. Экспериментальное исследование показало, что коэффициент взаимного перекрытия является не менее важным фактором, чем интенсивность теплового потока, образующегося при трении, и этот фактор должен учитываться при оценке фрикционных свойств и износостойкости наряду с другими характеристиками [182]. При прочих равных условиях больший коэффициент взаимного перекрытия приводит к росту общей температуры и уменьшению температурного градиента, что, в свою очередь, приводит к уменьшению коэффициента трения и росту интенсивности изнашивания. Увеличение температурного градиента за счет изменения конструктивных параметров (например, за счет изменения коэффициента взаимного перекрытия) и условий теплоотдачи, при прочих равных условиях, приводит к увеличению коэффициента трения. 550  [c.550]

В последнее время в качестве антифрикционных наполнителей стали использовать жидкие (группа 40) и пластичные смазочные материалы (0,5— 5 %), вводимые в реактопласт на стадии его приготовления. Влияние их на износостойкость АПМ не отличается от влияния твердых смазочных материалов. Однако эти добавки обладают повышенной чувствительностью к температуре полимерной матрицы. Подведение смазочного материала в зону трения определяется не только интенсивностью изнашивания, но и температурным расширением и диффузионными особенностями масла и матрицы. В качестве смазочных добавок применяют силиконы, стеараты металлов, парафины, синтетический воск, эфиры жирных кислот. На практике при создании АПМ используют не один, а несколько различных на-  [c.59]

Износостойкость подшипникового материала оценивается интенсивностью или скоростью изнашивания. Интенсивность изнашивания есть отношение линейного износа к пути трения, а скорость изнашивания — отношение линейного износа ко времени, в течение которого образовался оцениваемый износ.  [c.375]

Из зависимости интенсивности изнашивания от твердости поверхностного слоя (рис. 1, б) следует, что при сухом трении твердость определяет стойкость материала, а структура упрочненного слоя имеет меньшее значение. Это связано, по-видимому, с абразивным механизмом изнашивания, при котором, как установлено М. М. Хрущовым и другими исследователями, износостойкость определяется твердостью материала.  [c.61]

Коррозионно-механическое изнашивание наблюдается в подшипниках скольжения, валах, втулках, поршневых кольцах и т.д. При нормальном окислительном изнашивании коэффициент трения равен 0,01...0,10, а толщина разрушающегося слоя составляет 0,001...0,01 мм. Характеристикой изнашивания служит износостойкость. Износостойкость (износоустойчивость) — свойство материала оказывать в определенных условиях трения сопротивление изнашиванию, оцениваемое величиной, обратной скорости изнашивания или интенсивности изнашивания.  [c.108]

Если в высокоэластичных полимерах изнашивание по своей природе является фрикционным (повреждение обусловлено силами трения), то изнашивание более жестких и хрупких полимеров происходит в основном в результате микрорезания. На интенсивность изнашивания сильно влияет структура материала. При трении с граничной смазкой преобладание кристаллических областей в полимере над аморфными обеспечивает более высокую его твердость и износостойкость. Между тем увеличение степени кристаллизации ухудшает стойкость при абразивном изнашивании. Дело в том, что даже при повышении твердости за счет увеличения кристаллических областей она остается в несколько раз ниже твердости абразива, поэтому фактор повышения твердости оказывается неэффективным. Уменьшение эластичности полимера, по мнению А. М. Когана и Д. Я. Соболева, создает более благоприятные условия для начала срезания абразивными частицами микрообъемов материала, при срезе отделяются большие объемы, чем при фрикционной природе разрушения поверхности.  [c.159]


С увеличением нагрузок в узлах трения, ухудшающим в некоторых случаях условия смазывания деталей, с повышением требований к КПД механизмов, с применением в машинах специальных смазочных жидкостей, а в некоторых механизмах в связи с использованием в качестве смазочного материала воды традиционные методы повышения износостойкости деталей путем увеличения их твердости перестали себя оправдывать. Напомним, что фактическая площадь контакта с увеличением твердости материала уменьшается. В результате неизбежных перекосов деталей при эксплуатации увеличивается возможность их заедания или роста интенсивности изнашивания.  [c.269]

Износостойкость материала оценивают величиной, обратной скорости Vf или интенсивности изнашивания. Скорость и интенсивность изнашивания представляют собой отношение износа соответственно к времени или пути трения. Чем меньше значение скорости изнашивания при заданном износе Ah, тем выше ресурс работы t узла трения  [c.326]

Изнашивание — это процесс разрушения и отделения материала с поверхности твердого тела при трении, проявляющийся в постепенном изменении размеров и формы тела (ГОСТ 22674-88. Обеспечение износостойкости изделий ). Интенсивность изнашивания определяют в единицах объема, массы, длины и др. Износостойкость оценивается величиной, обратной скорости или интенсивности изнашивания.  [c.179]

Смазка — действие смазочного материала на поверхность трения, в результате которого уменьшается интенсивность изнашивания и (или) сила трения. Смазка всех узлов трения способствует повышению износостойкости трущихся поверхностей, предотвращает их заедание, а также способствует улучшению отвода тепла, возникающего в процессе неблагоприятных условий работы сопряженных деталей (например, червячные передачи, 7.3).  [c.26]

Расчет по критерию износостойкости. Связь между допустимой скоростью скольжения [и] и сроком службы подшипника Г можно установить, используя формулу И. В. Крагельского для интенсивности изнашивания трущейся поверхности, определяе мой как объем материала AV, удаленный с единицы номинальной поверхности на единице пути трения [44],  [c.22]

Конечный результат изнашивания, проявляющийся в виде отделения или остаточной деформации материала, называют износом, а частицы материала, отделившиеся в процессе изнашивания— продуктами износа. Количественными характеристиками процессов изнашивания являются скорость изнашивания — отношение износа ко времени, в течение которого он возник, и интенсивность изнашивания — отношение износа к пути, на котором происходило изнашивание, или к объему выполненной работы. Свойство материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости изнашивания, называют износостойкостью. Это свойство характеризуют также относительной износостойкостью — отношением износостойкостей испытуемого материала и материала, принятого за эталон, при их изнашивании в одинаковых условиях.  [c.73]

Величина износа деталей зависит от многих факторов, к которым относятся давление и скорость относительного перемещения деталей, температурный режим, материал и твердость деталей, шероховатость рабочих поверхностей, способ подвода масла, его качество и расход. С увеличением давления, скорости относительного перемещения поверхностей и повышением температуры интенсивность изнашивания деталей возрастает. Большое влияние на износостойкость оказывает правильный выбор материала, из которого изготовлены детали. При жидкостном трении величина износа меньше, чем при других видах трения. В несколько раз можно уменьшить износ деталей, используя масла со специальными добавками.  [c.144]

Износостойкость характеризует сопротивление инструментального материала изнашиванию лезвий. Оценивают износостойкость по отношению работы сил трения к массе продуктов износа или же по интенсивности изнашивания, то есть отношению массы продуктов износа к пути резапия.  [c.129]

Введение в базовые вакуумные масла присадки ПИК-01 , предназначенной для повышения износостойкости и снижения потерь на трение фрикционных пар, практически устраняет влияние вязкости на коэффициент трения и интенсивность изнашивания пары алюминиевый сплав-сталь в исследованном диапазоне динамической вязкости смазочного материала. Для выяснения механизма высокой износостойкости и низкого коэффициента трения при работе пары алюминиевый сплав-сталь в масле с  [c.68]

Способы выражения величины износа. Износостойкость является эксплуатационным или служебным свойством материала, детали или сопряжения, поэтому износ может выражаться различными способами, ближе всего характеризующими их служебное назначение. Во многих случаях наиболее удобно выражать износ величиной уменьшения линейного размера тела в направлении, нормальном к поверхности (линейный износ). Если линейный износ ДЛ произошел на пути трения ДЗ за время Дт, то отношение Д/г Д5 явится интенсивностью линейного изнашивания, а отношение Д/г Дт — скоростью линейного изнашивания.  [c.26]

Материаловедческие методы включают направленный синтез износостойких конструкционных и смазочных материалов, выбор рациональных конструкционных и смазочных материалов в узлах трения, изучение и управление процессами, протекающими в материалах при изнашивании. При этом важно помнить, что износостойкость не является постоянным свойством материала, а проявляется в конкретных условиях и режимах эксплуатации, различаясь как по характеру, так и интенсивности процесса изнашивания. Материалы деталей и узлов трения помимо износостойкости должны обладать комплексом других свойств, обеспечивающих надежную работу конструкции в целом.  [c.179]

Как известно, поверхность трения деталей машин неоднородна по своему составу и, следовательно, сопротивлению изнашиванию. Более твердые включения (например карбиды или окислы) шаржируют поверхность контртела. Поэтому целесообразно, воспользовавшись таблицами статистических данных и классами износостойкости, оценить возможную интенсивность изнашивания проектируемого механизма. При этом приходится учитывать, что даже в состоянии покоя, когда механизм не эксплуатируется, отдельные неровности являются вибровозбудителями, имеющими частоты собственных колебаний 70...90 кГц. Фактическая площадь контакта увеличивается во времени почти в 1,5 раза за сутки по сравнению с первой секундой контактирования. Происходит релаксация напряжений. В результате возникают погрешности геометрии контакта и положения контактирующих элементов механизма. Это изменяет характер нагруженности. В отдельных точках контакта может иметь место локальное нарушение совместимости вследствие фрикционного разофева или превышения нафузкой критических значений для материала элементов пары трения или смазочного материала. Его следствием является возникновение деформационных процессов, включая пе-редеформирование поверхностного слоя материала и даже локальное схватывание на отдельных участках поверхности.  [c.524]

Материал криолон наряду с дисперсными наполнителями (MoSi, бронза) содержит волокнистый наполнитель в виде измельченных углеродных волокон, что обеспечивает повышение механических свойств и теплопроводности, а также снижение интенсивности изнашивания, особенно в области низких температур. Общим для материалов этого типа является снижение коэффициента трения и износостойкости при повышении температуры, Криолон сохраняет работоспособность при температурах от -200 до -t-200° .  [c.29]


Приведенное выражение показывает пути снижения интенсивности изнашивания уменьшение плотности накопленной материалом энтропии, локализация энергетических процессов в тонком поверхностном слое изнашиваемого материала, применение материалов с максимальным значением Sq или повышение этой величины различными методами (поверхностным упрочнением, легированием элементами с высокими энергиями активации и др.)- Однако оно не отражает влияния отдельных физических и химических процессов на увеличение плотности накоплений энтропии и производства избыточной энтропии, которые необходимо знать для теоретической оценки долговечности или износостойкости узла трения. Не умаляя ценности полученных результатов, необходимо отметить, что они не позволяют выразить об1цую связь внешних взаимодействий с термодинамическими и физикохимическими процессами в трибосистеме, определяюш,ими интенсивность изнашивания или долговечность различных трибосистем.  [c.110]

Анализ радиограмм образца из высокопрочного чугуна выполненный Л. И. Марковской, позволил сделать вывод, что в процессе износа содержание углерода в поверхностных слоях увеличивается, а в глубинных слоях уменьшается [44]. Исследование изменений количества Y-фазы и углерода в поверхностных слоях образца показало, что содержание углерода изменялось идентично количеству уфазы. Было отмечено также снижение темпа износа и одновременно увеличение содержания карбидной фазы в поверхностных слоях при увеличении давления. В большинстве случаев появление аустенита в поверхностях трения приводило к увеличению износостойкости материала. Таким образом, было установлено, что в процессе трения в результате интенсивной пластической деформации при повышенных температурах происходит диффузия, приводящая к перераспределению химических компонентов сплава. Процессы фазовых превращений и изменение концентрации химических элементов существенно изменяют свойства поверхностных слоев металла, что влияет на его сопротивление изнашиванию.  [c.22]

Коэффициент трения накладок, уже обгоревших в процессе работы, значительно выше, чем у нового сырого материала. Поэтому, чтобы получить с первых же торможений высокое значение коэффициента трения, следует провести термообработку материала Ретинакс , заключающуюся в нагревании поверхности трения материала до 400—420° С (т. е. до начала выгорания легких составляющих фенолформальдегидной смолы) без свободного доступа окисляющей среды (например, в песке) до прекращения обильного дымовыделения [193]. Хотя Ретинакс при нагреве выше 450° С и не сгорает, но интенсивность его изнашивания резко возрастает. И все же в тормозных узлах с температурой 1000, 600 и 400° С износостойкость колодок из материала Ретинакс выше, чем износостойкость других видов фрикционных материалов, соответственно в 3, 6 и 10 раз. Прирабатываемость колодок из Ретинакса несколько затруднена вследствие его высокой износоустойчивости и изменения фрикционных свойств неработавшего материала под действием температуры (в связи с падением коэффициента трения). Поэтому в случаях применения указанного материала необходимо добиваться возможно более полного прилегания колодок к тормозному шкиву, протачивая для этого шкив и колодки. Для получения оптимальной прира-батываемости пары трения и получения максимальных начальных значений коэффициента трения рекомендуется [181] наносить на поверхность трения металлического элемента пары мягкий теплопроводный слой. В настоящее время исследовательские работы по изучению свойств Ретинакса широко ведутся в различных областях машиностроения и диапазон тормозных устройств с использованием этого материала непрерывно расширяется. Широкая экспериментальная проверка Ретинакса на тормозах шагающих экскаваторов, где температура нагрева достигает 360° С при давлении 7—12 кПсм и где за одно торможение выделяется до 660 ккал (работа торможения примерно равна 2,6-10 кГм), показала значительное преимущество его перед другими существующими типами фрикционных материалов как по износоустойчивости, так и по стабильности величины коэффициента трения. Поверхности трения шкивов тормозных устройств в процессе работы полировались без заметных царапин или задиров. Срок службы тормозных накладок из Ретинакса оказался в 10—13 раз выше, чем из других материалов. Хорошую работоспособность Ретинакс показал также в тормозах буровых лебедок [194], где температура достигает 600° С при давлении р = 6ч-10 кГ/см . В этих тормозах износостойкость материала Ретинакс оказалась в 6—7 раз выше, чем у асбокаучукового материала 6КХ-1. Срок службы материала Ретинакс в тормозах грузовых автомобилей оказался в 4—7 раз выше, чем у других асбофрикционных композиций. Проведенные лабораторные испытания Ретинакса в муфтах и тормозах кузнечно-прессового оборудования [192] (при р = 10ч-13 кГ/см 5.%  [c.536]

В связи с тем, что время действия теплового источника для опережающей и отстающей поверхности при качении со скольжением тел будет различным, при прочих равных условиях глубина воздействия, величина теплового слоя будут больше на отстающей поверхности. Если также учесть, что материал или смазка поверхности, находящаяся на отстающей поверхности будут подвергаться более продолжительному температурному влиянию в контакте, то при прочих равных условиях интенсивность изнашивания (износ на единицу пути трения) на отстающей поверхности должна быть больше. Теоретический вывод подтвержден экспериментально. Различие наблюдали при исследовании износостойкости твердых материалов даже при работе в вакууме. Приняв форму пятна контакта в виде круга с радиусом ГфИ с равномерно распределенной тепловой интенсивностью q =fPVf. получаем следующие зависимости  [c.176]

Однако постоянное стремление к уменьшению массы машин и повышению интенсификации рабочих процессов привело к увеличению давлений в узлах машин и скоростей скольжения и ухудшило условия смазывания. Кроме того, требования к повышению КПД механизмов, а также применение специальных смазочных материалов и жидкостей привело к тому, что традиционные методы увеличения износостойкости деталей повышением их твердости во многих случаях перестали себя онравдывать. Площадь фактического контакта поверхностей деталей при высокой твердости материала в силу ряда причин (наличие возможного перекоса, большой шероховатости и волнистости поверхности) составляет очень малую долю номинальной поверхности трения. В результате на участках фактического контакта создаются громадные давления, что приводит к интенсивному изнашиванию поверхностей трения.  [c.31]

Многосторонняя проблема трения и изнашивания становится предметом интенсивного изучения не только техники, но и различных разделов физики, химии и механики. Достижения в области отдельных естественных наук вызывают стремление перенести их на пограничные области, к которым относятся процессы контактных взаимодействий. Однако прямые попытки переноса решения классических задач на задачи трибологии в ряде случаев сомнительны. Решение проблемы износостойкости связано с изучением II поиском закономерностей процессов в зоне контактного взаимодействия твердых тел, необходимых для разработки новых методов снижения трения и изнашивания. Одним из направлений получения дополнительных резервов повышения износостойкости пар трения является возможность управления взаимодействием дефектов кристаллической решетки металла. В этой связи исследования структурных изменений при трении представляют глубокий теоретический интерес и имеют важнейшее практическое значение. За последние годы проведено относительно большое количество исследований структуры металла при трении, которые в литературе в основном представлены в виде отдельных разрозненных публикаций. Обобщающий материал по исследованию процессов трения и изнашивания в металловедческом аспекте содержится лишь в немногих монографиях советских авторов (В. Д. Кузнецов, Б. Д. Грозин, Б. И. Костецкий, И. М. Любарский) и зарубежных (Ф. П. Боуден, Д. Тейбор, Т. Ф. Куинн).  [c.3]

Исследования оптимальной величины диаметрального зазора в парах сталь — полиамид, проведенные на вкладышах из полиамидных материалов и роликах из стали 45 в режиме сухого трения, показали, что при относительных зазорах менее 0,005 d и более 0,014 d начинается интенсивное изнашивание подшипника [49]. Они также позволили установить, что для подшинннков, к которым не предъявляется повышенных требований по точности сопряжения, диаметральный зазор может быть принят в пределах (0,004- 0,012) d, а для подшипников, запрессованных в металлические обоймы, (0,005 ч-0,01) d. Величина натяга для запрессовки втулки рекомендуется в пределах (0,03 -h 0,05) D D — номинальный диаметр отверстия металлической обоймы). Касаясь вопроса запрессовки полиамидной втулки в металлическую обойму, необходимо отметить, что при запрессовке втулка подвергается сжатию, которое создает дополнительные внутренние напряжения, способствующие ползучести материала. Склеивание втулок дает лучшие результаты. Для склеивания применяют клеевые лаки (например, Ф-10 по ТУ 6-05-1092—74), а также эпоксидные клеи. В обратной паре трения, т. е. при нанесении покрытия на вал (или защитную втулку вала) и втулке в корпусе из стали полиамидное тонкослойное покрытие меньше подвергается отслаиванию. Обратная пара трения имеет ряд других преимуществ перед пряхмой парой, в том числе отвод тепла через стальной вкладыш в корпусе улучшается, повышается износостойкость сопряжения из-за равномерного изнашивания всей поверхности полиамидного покрытия, а не только контактной поверхности трения вкладыша, упрощается нанесение покрытия на наружную поверхность вала. Теоретические и экспериментальные исследования работоспо-  [c.77]


Рассмотрение механизма разрушения с энергетических позиций показывает, что абразивное изнашивание можно представить как процесс, при котором энергия абразивной частицы Еа расходуется на насыщение металла энергией для зарождения и развития трещин. Расход энергии на трение, тепловой эффект и процессы, происходящие в сомой частице, можно принять постоянными [35]. Тогда величина иптепсивпости изпашивапия тем меньше, чем больше энергии может поглотить снлав до разрушения - Ем и чем меньше величина энергии разрушения абразивного тела -Еа. Знание реальной величины энергии разрушения абразивных частиц в конкретных условиях эксплуатации рабочей кромки лопатки, позволит более обосновано подойти к разработке износостойкого материала для данных условий изнашивания и выработать рекомендации относительно режимов работы, при которых достигаются мипимальпые значения энергии разрушения абразивных частиц, а, следовательно, менее интенсивное изнашивание поверхности трепия.  [c.57]

На рис. 19, а видно, что при неполном перекрытии износ асбофрикционного материала, как и трение, существенно зависит от действующей газовой среды. На воздухе износ асбофрикционного материала наибольший, в среде углекислого газа изнашивание осуществляется наименее интенсивно. Через 50 ч после начала испытания соотношение износа материала 6КХ-1Б на воздухе, в средах азота и углекислого газа составляло 1 0,2 0,02. Коэффициент трения в процессе износных испытаний при 270—300° С отличался нестабильностью, то достигая сравнительно высоких значений (/ = 0,3), то снижаясь до уровня, соответствующего трению при наличии смазки [ = 0,05). Среднее значение коэффициента трения после длительных испытаний при повышенной температуре меньше первоначального. Повышенную (по сравнению с азотом) износостойкость асбофрик-  [c.148]


Смотреть страницы где упоминается термин И износостойкость материалов пар трени интенсивность изнашивания : [c.14]    [c.58]    [c.33]    [c.487]    [c.325]    [c.160]   
Уплотнения и уплотнительная техника (1986) -- [ c.263 ]



ПОИСК



И износостойкость материалов пар трени

Изнашивание

Изнашивания интенсивность

Износостойкие материалы

Износостойкость

Износостойкость материалов

Интенсивность изнашивания пар трения

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте