Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Феноменологические теории упругости. сред со структурой

ФЕНОМЕНОЛОГИЧЕСКИЕ ТЕОРИИ УПРУГОСТИ СРЕД СО СТРУКТУРОЙ  [c.104]

В работе А. И. Леонова [4] была предложена феноменологическая теория тиксотропии при движении упруго-вязких жидкостей, основанная на том, что при движении упруго-вязкой жидкости в механическом поле возникает изменение структуры среды и связанное с этим изменение упруго-вязких характеристик материала. Указанная теория позволяет одновременно учитывать основные эффекты при движении упруго-вязких сред изменение непрерывного релаксационного спектра в процессе движения среды, нелинейную вязкость и наличие нормальных напряжений. При малых  [c.32]


До сих пор, рассматривая распространение волн в кристаллах, мы не принимали во внимание дискретную структуру кристаллической решетки. Так можно поступать до тех пор, пока длина акустической волны X остается много большей, чем постоянная решетки а, или до частот 100 ГГц. Выше этого предела дисперсионные кривые, получаемые из уравнений классической теории упругости, уже плохо согласуются с микроскопическими расчетами, базирующимися на уравнениях динамики решетки. Поэтому, если оставаться в рамках феноменологических моделей механики сплошных сред, то уравнения состояния кристалла необходимо модернизировать для учета дискретности среды, макроскопически проявляющейся в нелокальности ее реакции на приложение переменного в пространстве внешнего воздействия. Это можно сделать с помощью так называемой нелокальной теории упругости [19], представляющей собой феноменологическое обобщение классической механики сплошной среды. Одно уравнение состояния элемента сплошной среды, описывающее как пространственную, так и временную нелокальность, уже приводилось нами при рассмотрении релаксационных процессов. Если не учитывать временную нелокальность (которая, в частности, ответственна за диссипацию энергии в среде), то для твердого тела нетрудно получить следующее уравнение состояния (нелокальный закон Гука)  [c.231]

Таким образом, при построении феноменологических теорий часто бывает удобно воспользоваться континуальным представлением, игнорируя атомную структуру вещества. Разумеется, именно так следует поступать, рассматривая истинно макроскопические процессы, например распространение звука в океане или прохождение света звезд через атмосферу и радиоволн в ионосфере. Материал рассматривается при этом как непрерывная среда, состав которой определяет локальную плотность, упругость, коэффициент отражения, диэлектрическую проницаемость и т. д., т. е. параметры, фигурирующие в волновом уравнении. Такой подход оправдан, так как здесь мы имеем дело с возмущениями, длина волны которых значительно превышает типичное расстояние между атомами. С другой стороны, в приложении к тепловым колебаниям или к движению электронов в неупорядоченной конденсированной среде континуальная трактовка редко бывает оправдана. Тем не менее математическое сходство этих задач с соответствующими задачами макроскопической физики наводит на мысль о том, что небесполезными могут оказаться и модели, в которых флуктуации плотности или вариации локального кристаллического порядка рассматриваются просто как физические причины изменений локального потенциала, плотности, скорости фононов и т. д.  [c.134]


Феноменологическое исследование механических свойств композиционных материалов может быть проведено двумя путями. Первый основан на рассмотрении армирующего материала как конструкции и учитывает реальную структуру композиции. В этом случае задача состоит в установлении зависимостей между усредненными напряжениями и деформациями. Второй путь основан на рассмотрении армированных материалов как квазноднородных сред и использовании традиционных для механики твердых деформируемых тел средств и методов их описания. Краткая схема аналитического расчета упругих констант композиционного материала методом разложения тензоров жесткости и податливости в ряд по объемным коэффициентам армирования приведена в монографии [60, 83]. Установлено, что при малом содержании арматуры можно ограничиться решением задачи для отдельного волокна, находящегося в бесконечной по объему матрице. Однако такой подход заведомо приводит к грубым погрешностям при расчете упругих характеристик пространственно армированных материалов, объем которых заполнен арматурой на 40—70 %. К тому же следует учесть, что пространственное расположение волокон в этих материалах приводит к росту трудностей при решении задачи теории упругости по определению напряженно-деформированного состояния в многосвязанной области матрица—волокно. Коэффициент армирования при этом входит в расчетные выражения нелинейно, что приводит к очередным трудностям реализации метода разложения упругих констант материала по концентрациям его компонентов.  [c.55]

Феноменологический путь изучения физических явлений ведет свое начало от Ньютона. По этому пути шли после Ньютона все ученые-физики прошлого века. Указанное выше направление может быть названо формальным. По мере совершенствования физических представлений о молекулярной структуре веществ использование таких формальных представлений постепенно сужалось, и к настояшему времени оно сохранилось только в области чистой механики, например в теории упругости и гидромеханики, которые и стали именоваться сокращенно механикой сплошных сред.  [c.6]

Одним из возможных подходов к изучению движения материальных тел является построение макроскопических феноменологических теорий, основанных на общжх добытых из опыта закономерностях и гипотезах. К таким теориям относятся классические теории упругости, пластичности, ползучести и получившие в пос- ледпее время развитие моментные теории упругости с дополнительными лараметрами, определяющими состояние среды. Ценность классических теорий с гипотезой макроскопической однородности в том, что они составляют основу инженерных расчетов в случае, когда структура материала отступает на второй план.  [c.99]

Во второй части книги мы рассмотрим акустические волны в твердых телах, характеризующихся различными физическими свойствами — упругой анизотропией, пьезоэффектом, наличием носителей электрического заряда, магнитоупругостью, внутренней структурой и т. д. Однако, прежде чем переходить к изучению такого рода сложных систем, естественно ознакомиться с наиболее простым случаем — классическим идеально упругим изотрот ым твердым телом (диэлектриком). Под идеально упругим будем подразумевать твердое тело, в котором отсутствуют пластические деформации. Иными словами, при снятии силовой нагрузки тело приходит в первоначальное состояние (отсутствие механического гистерезиса). Феноменологически такое тело может быть описано в рамках теории упругости — хорошо разработанного раздела механики сплошных сред (см., например, 1]). Ниже приведены основные сведения из теории упругости, необходимые для понимания дальнейшего изложения. Несмотря на то, что в настоящей главе мы ограничимся рассмотрением волн бесконечно малой амплитуды в рамках линейной акустики, Б целях методического единства здесь приведены и некоторые сведения из нелинейной теории упругости изотропных твердых тел.  [c.188]

Указанные соображения и определили структуру книги. В ней обсуждаются акустические модели различных сред (жидкостей, газов, газожидкостных смесей, однородных и структурно-неоднородных твердых сред) и уравнения волн конечной амплитуды в таких средах. Качественный характер волнового процесса определяется сочетанием и конкуренцией нескольких факторов, таких, как нелинейность, диссипация, дисперсия, а в неодномерных случаях — также рефракция и дифракция, и в книге последовательно рассматривается влияние зтих факторов на эволюцию и взаимодействие акустических волн. В сущности, зто - книга о поведении слабонелинейных волн в сплошных средах. Исходя из такой общеволновой трактовки мы и выбирали материал книги, который все же не исчерпывает всего содержания нелинейной акустики. В частности, мы почти везде ограничиваемся рассмотрением продольных упругих волн (т.е. собственно акустикой) и не рассматриваем злектро- и магнитоакустических процессов. При зтом мы стараемся избегать сложных математических схем, используя по возможности упрощенные модели и феноменологические подходы. Заметим, что, хотя основу книги составляют вопросы теории, мы везде, где зто возможно, приводим количественные оценки и данные зкспериментов, пытаясь дать читателю представление о параметрах и возможностях реализации рассматриваемых процессов.  [c.4]


В механике сплошной среды такой подход обобщенно именуется феноменологическим. За этим, быть может, несколько тяжеловесным термином скрыт вполне определенный смысл. При феноменологическом подходе мы не вникаегл во внутренние причины, по которым сплошная среда ведет себя так, а не иначе. Нам достаточно знать, что она ведет себя именно так, хотя мы и знаем, что в других условиях (известно, каких) она будет вести себя по-иному. Из курса сопротивления материалов известно, что металлы следуют закону Гука, но мы отвлекаемся от причин, по которым модуль упругости у одних металлов больше, а у других — меньше. Если задан модуль упругости, то для решения определенного класса задач этого нам достаточно. Мы знаем, например, также, что при напряжениях, больших предела текучести, диаграмма растяжения может иметь самую различную форму в зависимости от структуры материала. Но в теории пластичности совершенно излишни сведения об этой структуре. Достаточно задать диаграмму, а затем можно путем более или менее сложных операций определить, как будет вести себя реальная конструкция, изготовленная из этого материала.  [c.201]


Смотреть страницы где упоминается термин Феноменологические теории упругости. сред со структурой : [c.18]    [c.234]   
Смотреть главы в:

Структурные уровни деформации твердых тел  -> Феноменологические теории упругости. сред со структурой



ПОИСК



Среда упругая

Структуры упругие

Теории феноменологические

Теория упругости

Упругость Теория — см Теория упругости

Упругость среды



© 2025 Mash-xxl.info Реклама на сайте