Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы Сопротивление усталостному напряжению

Традиционные высокопрочные сплавы, как правило, имеют низкую пластичность, высокую чувствительность к концентраторам напряжений и сравнительно малое сопротивление усталостному разрушению. Композиционные волокнистые материалы, обладая высоким пределом прочности и еще меньшей пластичностью, чем высокопрочные сплавы, имеют, однако, меньшую чувствительность к концентраторам напряжений и большее сопротивление усталостному разрушению. Это объясняется тем, что у материалов различный механизм развития трещин. В традиционных изотропных высокопрочных сталях и сплавах развитие трещин идет прогрессирующим темпом, скорость трещинообразования возрастает по мере вовлечения в очаг образования трещины все больших элементов структуры — зерен, дендритов и пр.  [c.12]


Сопротивление усталостному разрушению при плоском и объемном напряженном состоянии для пластичных материалов определяется главным образом величиной переменных касательных напряжений условия достижения предельного напряженного состояния для симметричного цикла с соблюдением синхронности и синфазности напряжений формулируются по гипотезе наибольших касательных напряжений  [c.449]

Для материалов малопластичных и хрупких на сопротивление усталостному разрушению оказывают влияние не только касательные, но также нормальные напряжения условия достижения предельного напряженного состояния формулируются по наибольшим касательным напряжениям с отображением влияния нормальных напряжений [31]  [c.497]

Предыдущие рассуждения касались обычного поведения слоистых пластин. Наряду с этими вопросами много внимания уделяется исследованию поведения на свободной боковой поверхности, поскольку слоистые материалы подвержены межслойному разрушению. В первых работах производился расчет плоской задачи в сечении пластины с прямолинейными слоями при однородной деформации. Оказалось, что по мере приближения к свободной боковой поверхности понижается напряжение, действующее в плоскости пластины вдали от края, и возникают большие межслойные напряжения [24, 25]. Эксперименты с композитными слоистыми образцами показывают, что эти межслойные напряжения приводят к снижению сопротивления усталостному разрушению [26] и что приложенное в плоскости напряжение для определенных последовательностей ориентаций волокон может привести к статическому расслоению из-за межслойных растяжений и сдвигов вблизи свободных боковых поверхностей [27].  [c.420]

Для хрупких материалов и, как об этом будет сказано в этом разделе ниже, для материалов 5 усталостным нагружением подобные методы сопротивления. материалов должны быть заменены рассмотрением начальных напряжений, которые могут присутствовать,, и более точным исследованием напряжений, возникающих при нагружении, в рамках теории упругости (см. 3.1) или с помощью экспериментальных методов исследования напряжения. Начальные напряжения в хрупких материалах возникают при лить , закалке, сварке и т. п.. и также могут быть высокими. Определение величины начальных напряжений отдельном образце методом неразрушающего контроля нелегкое дело, но такие напряжения могут быть уменьшены частичным или полным отжигом, а иногда простым изменением технологического процесса. Усталостное разрушение, так же как и хрупкое разрушение обычно всегда ускоряется присутствующими дефектами. Эти виды разрушений связаны главным образом с растягивающими, а не сжимающими напряжениями частично, по крайней мере из-за того, что зарождающиеся или развивающиеся трещины смы каются при сжатии. Вследствие поверхностного окисления м  [c.43]


Тео рия концентрации напряжений подробно рассмотрена в работах [67, 96]. Закономерности влияния концентрации напряжений на характеристики сопротивления усталостному разрушению материалов и деталей машин проанализированы в [97, 207].  [c.28]

Допускаемые контактные напряжения (табл. 12.7) установлены для оловянных бронз исходя из условия сопротивления усталостному выкрашиванию и стойкости против изнашивания, для других материалов — из условия отсутствия заедания.  [c.242]

Сложность прогнозирования поведения металлических материалов при циклическом нагружении обусловлена его зависимостью от многих факторов. Это связано с тем, что процесс зарождения и распространения усталостной трещины локален. При этом определяющими являются высокие локальные напряжения в объемах металла, соизмеримых с размерами его структурных составляющих, обусловленные уровнем внешних нагрузок, цикличностью нагружения, состоянием поверхностного слоя, концентрацией напряжений, масштабным фактором и рядом других факторов. Это приводит к тому, что определяющими при усталостном разрушении являются не осредненные характеристики сопротивления деформированию и разрушению, определяемые при статическом нагружении на образцах достаточно больших размеров, а локальные характеристики и их сочетания, которые трудно поддаются исследованию и количественному определению. Без учета основных факторов, влияющих на циклическую прочность металлических материалов, нельзя получить достоверные характеристики сопротивления усталостному разрушению деталей машин [1].  [c.208]

Прочность при плоском и объёмном напряжённом состоянии. Сопротивление усталостному разрушению для пластичных материалов определяется главным образом величиной переменных касательных напряжений условия проч-  [c.352]

Усталостные испытания сварных соединений с фланговыми швами, общим числом более 200, показали, что одними из главных факторов, определяющих прочность соединения при переменных напряжениях, являются относительные размеры и взаимное расположение элементов соединения. Исчерпывающее сравнение различных соединений выполнить затруднительно из-за изменения в широких пределах размеров соединений, длины сварных швов и данных материала. Однако несколько небольших серий испытаний позволили получить сравнительные данные, показывающие влияние на сопротивление усталостному разрушению отношения ширины соединяемых элементов или расстояния между фланговыми швами к длине швов. Результаты испытаний соединений со сварными швами длиной 102 мм (рис. 8.1, а) и различной шириной внешних пластин образца приведены в табл. 8.2. Из этих данных следует, что при неизменном уровне переменного напряжения во внешних пластинах число циклов до разрушения уменьшается при увеличении ширины этих пластин. Это отчасти объясняется тем, что при данной толщине пластины и данном значении переменного напряжения увеличение ширины пластины приводит к увеличению силы, передаваемой через сварные швы, и, следовательно, к повышению местных напряжений в основном материале у концов угловых швов, где происходит разрушение образца.  [c.175]

Влияние дефектов на усталостную прочность сварных соединений. При значительных переменных напряжениях прочность сварных соединений определяется их сопротивлением усталостным разрушениям. Последние обычно характеризуются пределом выносливости, который зависит от концентрации напряжений, создаваемой формой соединения или дефектом сварки, от величины и знака остаточных напряжений, а также от свойств применяемых материалов. Технологические дефекты — подрезы, непровары, несплавления и трещины создают значительную концентрацию напряжений и снижают долговечность соединений. При определенных условиях дефекты типа пор и шлаковых включений, не опасных при статическом нагружении, могут вызвать преждевременные усталостные разрушения. Ниже приведены данные  [c.282]


Допускаемые контактные напряжения (см. табл. 11.7) установлены для оловянных бронз из условий сопротивления усталостному выкрашиванию и стойкости против износа, для других материалов — из условия отсутствия заедания.  [c.307]

Предотвращение усталостного разрушения деталей машин и сооружений становится все более актуальным. Это вызвано, во-первых, требованием снижения материалоемкости машин, выполнение которого связано с повышением уровня напряженности их детален и в первую очередь вибрационной напряженности, во-вторых — требованием увеличения ресурса машин, что приводит к большому количеству циклов переменных напряжений за срок их службы и к возрастанию влияния малых переменных нагрузок, которых трудно избежать в процессе эксплуатации, в-третьих — расширением набора используемых в технике материалов, характеристики сопротивления усталостному разрушению которых, с учетом влияния технологии, изучены недостаточно. Поэтому знание достоверных характеристик сопротивления усталостному разрушению материалов имеет большое начение.  [c.13]

О том, как рассчитываются детали при циклических напряжениях, речь впереди. Сейчас же можно сказать следующее. При циклических напряжениях разрушение начинается с образования местной трещины в окрестности наиболее напряженной точки. Со временем эта трещина развивается и приводит к полному разрушению конструкции. Поэтому инженер, будучи озабочен прочностью коленчатого вала, должен среди множества его угловых положений, среди множества сечений отыскать наиболее напряженную точку, в которой может предположительно образоваться усталостная трещина, а затем назначить соответствующий коэффициент запаса. Во всех задачах, которые мы до сих пор в курсе сопротивления материалов рассматривали и еще будем рассматривать, мы считаем коэффициент запаса заданным. Но выбор коэффициента запаса входит также в  [c.93]

Предел выносливости, Выполнение практических расчетов на сопротивление усталости требует установления значения предельного напряжения в условиях работы детали при циклически изменяющихся напряжениях. Установлено, что для многих материалов существует такое наибольшее (предельное) значение максимального напряжения цикла, при действии которого не происходит усталостного разрущения образца после произвольно большого числа циклов. Это напряжение названо пределом выносливости.  [c.173]

Композиционные материалы по отношению к циклически изменяющимся напряжениям естественно обладают той же анизотропией, которая проявляется и при обычном нагружении. В тех случаях, когда усталостная трещина развивается поперек арматуры, композиты, как и следовало ожидать, проявляют высокое сопротивление усталости. Так, например, для углепластиков (Т- и 0,8о в.р. Но изучение усталостной выносливости композитов еще впереди.  [c.480]

Прочность является главным критерием работоспособности для большинства деталей. Поломки частей машин не только приводят к простоям, но и могут быть причиной несчастных случаев. Различают статическую и усталостную прочность деталей. Нарушение статической прочности происходит тогда, когда величина рабочих напряжений превышает предел статической прочности материала. Обычно это связано с перегрузками. Усталостные поломки детали вызываются длительным действием переменных напряжений, величина которых превышает характеристики усталостной прочности материала (например. О-1). Основы расчетов на прочность изложены в разделе сопротивления материалов.  [c.211]

Так как усталостные трещины, вызывающие поломку зуба, возникают у основания на стороне растянутых волокон, расчет ведут по напряжениям на растянутой стороне. При определении нормальных напряжений в опасных точках сечения пользуются обычными формулами из раздела сопротивления материалов. Однако, поскольку зубья представляют собой балки с малым отношением длины к высоте и с резко изменяющейся формой к основанию, то напряжения, найденные по формулам сопротивления материалов, отличаются от действительных. В связи с этим в расчетные зависимости вводят, коэффициент концентрации напряжений К . С учетом сказанного, нормальные напряжения  [c.264]

В книге излагаются основные заиономерности механики замедленного циклического и быстропротекающего хрупкого разрушения материалов в зависимости от условий нагружения, вида напряженного состояния, механических свойств и структуры материала, рассматриваются соответствующие модели процессов деформирования я возникновения разрушения в вероятностной трактовке, а также кинетика развития трещин. Влияние нестационарной атружеяности на разрушение анализируется иа основе гипотез о накоплении повреждения. Предложен расчет а прочность по критерию сопротивления усталостному и хрупкому разрушению в связи с условиями подобия и учетом температурно-временных факторов, дается оценка вероятности. разрушекия.  [c.2]

Рассмотренные данные по прочности при мягком нагружении относятся к испытаниям в условиях симметричного цикла. Асимметрия напряжений Но оказывает суш,ественное влияние на долговечность в связи с особенностями сопротивления материалов деформированию при наличии среднего напряжения. Так, для циклически стабильных и разупрочняюгцихся материалов в интервале напряжений, приводяш,их к квазистатическому разрушению, долговечность определяется величиной максимального напряжения цикла (рис. 1.1.5). У циклически упрочняюш,ихся материалов с усталостным типом разрушения малоцикловая прочность характеризуется амплитудными значениями напря жений (рис. 1.1.6).  [c.11]

Перспективность использования композиционных материалов в различных отраслях техники определяется их широким спектром самых различных свойств. Высокие прочность и удельная жесткость, малая чувствительность к концентраторам напряжений и высокое сопротивление усталостному разрушению, жаропрочность, износостойкость, электропроводность, а такжеэлектро-изоляционпые, антифрикционные, теплозащитные, эрозионностойкие, радиопрозрачные, радпопоглощающие, энергоемкие и другие свойства — таков далеко не полный перечень важнейших характеристик этих материалов.  [c.230]


Экспериментальный материал о рассеянии характеристик сопротивления многоцикловой усталости при стационарном нагружении позволил развить и обосновать критерии подобия усталостного разрушения в вероятностной постановке. В функции распределения пределов выносливости (для заданной вероятности разрушения) были введены средние значения пределов выносливости гладких образцов, теоретические коэффициенты концентрации напряжений, относительные градиенты напряжений, параметры сечений и характеристики чувствительности материалов к концентрации напряжений и абсолютным размерам. Для обосйо-вания этих функций в области малы  [c.24]

МПа превышает предел выносливости) вследствие больших потерь на внутреннее трение образцы разогреваются и теряют устойчивость. Жидкая коррозионная среда при уровнях напряжений выше предела выносливости охлаждает образец и увеличивает его долговечность. Периодическое смачивание 3 %-ным раствором Na I нагретой до 230—250°С стали при низких амплитудах циклических нагрузок также резко снижает ее сопротивление усталостному разрушению. Условный предел выносливости снижается с 185 до 145 МПа. При уровнях циклических напряжений выше предела выносливости электрохимическое воздействие коррозионной среды не успевает существенно проявиться ввиду сравнительно небольшого времени до разрушения, в то время как из-за охлаждающего эффекта ограниченная долговечность стали увеличивается. Аналогичные результаты получены и другими авторами. Следует отметить, что такое заключение не является универсальным для разных металлов. Оно справедливо для тех металлов и сплавов, для которых повышение температуры образца (от комнатной и выше), например, в результате циклического деформирования/сопровождается монотонным снижением сопротивления усталости. К таким материалам относятся, в частности, хромоникелевые стали.  [c.63]

Типичные значения разрушающих напряжений в литой стали, используемой для изготовления корпусов турбины, приведены на рис. 15.4 [1]. Сопротивление высоконапряженному усталостному циклированию материалов корпуса подчиняется соотношению Мэнсона—Коффина для коротких периодов, но падает ниже линии прочности с увеличением длительности периодов [15] таким же образом, как это показано для поковок из Сг, Мо, V стали (рис. 15.7). Знание поведения материала в условиях действия высоких усталостных напряжений существенно для выбора таких ус-  [c.204]

Режим нагружеяня. Стремление учесть влияние случайного нагружения на характеристики сопротивления усталостному разрушения металла сделало необходимым проведение лабораторных испытаний при различных режимах изменения напряжений. Режимы лабораторных испытаний на усталость можно подразделить на стационарные, монотонного увеличения или уменьшения нагрузки, блочного и случайного нагружения. При стационарном режиме (гармоническом, бигармоническом, треугольном, трапецеидальном и др.) закон изменения а в пределах одного хщкла остается постоянным до разрушения. При монотонном нагружении амплитуда или среднее напряжение плавно или ступенчато изменяется до разрушения детали. Блочное нагружение осуществляется ступенчатым (рис. 11.5.) или непрерывными блоками, которые периодически повторяются вплоть до разрушения. При случайном нагружении последовательность ступеней или единичных значений амплитуд и средних напряжений цикла изменяется случайным образом. Наиболее часто влияние случайного характера приложения нагрузки на долговечность материалов оце1ЕИвается по результатам испытаний конструкционных элементов или образцов при использовании блоков, отображающих статистические закономерности случайного нагружения.  [c.292]

Существенное снижение характеристик сопротивления усталостному разрушению металлов при наличии дефектов типа грещин известно давно. Однако особенн большой интерес к влиянию трещин на прочность материалов и деталей машин проявляется в последние годы. Эго вызвано интенсивным развитием относительно нового> раздела механики твердого деформируемого тела — механики разрушения, рас сматривающей условия разрушения на основе анализа напряженно-деформированного сосгояния в вершине трещины. В этом направлении выполнен большой объем теоретических и экспериментальных исследований, позволивших установить общие закономерности начала развития трещин, их стабильного развития и окончательного разрушения при циклическом нагружении с учетом влияния технологических,, конструкционных и эксплуатационных факторов. Эти исследования позволили еде-лагь следующие основные выводы.  [c.3]

Основные закономерности зависимости предела выносливости от прочности были рассмотрены ранее. Они сводятся к тому, чта предел выносливости увеличивается менее интенсивно, чем предедг прочности, а также что с увеличением предела прочности и понижением пластичности более суш,ественно проявляется влияние концентрации напряжений, коррозионных сред, чистоты поверхности и т. п. Это не значит, что необходимо отказаться от использования высокопрочных материалов, однако следует весьма тш,а-тельно относиться к устранению и нейтрализации (с использованием различных конструктивных и технологических методов) действия различных факторов, способных привести к снижению характеристик сопротивления усталостному разрушению.  [c.51]

Таким образом, из-за исключительно сложных и тяжелых условий работы коленчатого вала предъявляются высокие и разнообразные требования к механическим свойствам материалов, применяемых для изготовления коленчатых валов. Материал коленчатого вала должен обладать высокой прочностью и вязкостью, большой сопротивляемостью износу и усталостным напряжениям, сопротивлением действию ударных нагрузок и твердостью. Такими свойствами обладают правильно обработанные углеродистые и легированные стали, а также высококачественный чугун. Коленчатые валы отечественных автомобильных и тракторных двигателей изготовляют из сталей 40, 45, 45Г2, 50, специального чугуна, а для форсированных двигателей—из высоколегированных сталей 18ХНВА, 40ХНМА и др.  [c.245]

Нержавеющие стали, как и все прочие металлические материалы, подвержены усталостному разрушению. В отсутствие коррозии все типы нержавеющих сталей имеют истинный предел усталости, который равен примерно половине временного сопротивления (для сталей с очень высоким временным сопротивлением эта доля несколько меньше). В коррозионной среде предел выносливости отсутствует и число циклов, приводящих к разрушению, становится функцией циклического напряжения при любых уровнях последнего. Кривая зависимости напряжения от логарифма числа циклов также смещается в сторону меньших напряжений. Взаимосвязь состава и прочности стали И параметров коррозионной среды с усталостным разрушением слишком сложна и не может быть детально здесь рассмотрена. В качестве общего примера можно привести такие цифры предел коррозионной выносливости (10 циклов в 3%-ном растворе Na l) смягченных мартенситных сталей равен примерно 120 МН/м , а смягченных аустенитных сталей 200 МН/м ,  [c.39]


Характеристики сопротивления усталости, в первую очередь предел иыпосливости, существенно зависят от технологии изготовления образцов tt деталей машин, конструкции и условий их эксплуатации. Под воздействием коррозии, фреттинг-коррозии, при наличии остаточных напряжений растяжения, мелких поверхностных трещин и т. п. пределы выносливости деталей машин могут снижаться в пять и более раз по сравнению с пределами выносливости лабораторных образцов. Поэтому знание характе-рнстик сопротивления усталостному разрушению металлов и сплавов, полученных в лабораторных условиях при исключении влияния определя-1СИЦИХ факторов, является недостаточным как при разработке материалов, IIIK и при расчетах деталей машин и сооружений на прочность.  [c.13]

Расчет на сопротикление усталости. Уточненные расчеты на сопротивление усталости отражают влияние разновидности цикла напряжений, статических и усталостных характеристик материалов, размеров, формы и состояния поверхности. Расчет выполняют в форме проверки коэффициента У запаса прочности, минимально допустимое значение которого принимают в диапазоне [/5] = 1,5—2,5 в зависимости от ответственности конструкции и последствий разрушения вала, точности определения нагрузок и напряжений, уровня технологии изготовления и контроля.  [c.169]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]

На усталостную прочность в основном влияют максимальные Рткс и минимальные Рмин напряжения цикла. Кроме них в сопротивлении материалов вводят понятие постоянного, или среднего, напряо/сения цикла р (рис. 654, б)  [c.592]

Прочность — главный критерий работоспособности для большинства деталей. Деталь не должна разрушаться или получать пластические деформации при действии на нее нагрузок. Различают статическую потерю прочности и усталостные поломки деталей. Потеря прочности происходит тогда, когда значение рабочих напряжений превышает предел текучести а,, для пластичных материалов или предел прочности ст для хрупких материалов. Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Усталостные поло.мки вызыва -отся длительным действием переменных напряжений, значение которых превышает характеристики выносливости материалов (например, о ,). Основы расчета на прочность и усталость были рассмотрены в разделе Сопротивление материалов . Здесь же общие законы расчетов на прочность т усталость рассматривают в применении к конкретным деталяму  [c.260]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Все металлы, применяемые в технике, являются поликристалли-ческими веществами, состоящими из отдельных зерен и не представляющими того однородного монолита, каким считают материал согласно основным гипотезам сопротивления материалов. Зерна технических металлов представляют собой совокупность кристаллов, имеющих неправильную огранку, которые обычно называют кристаллитами. Поликристалличность материала и неизбежная его неоднородность приводят к тому, что под действием тех или иных нагрузок в отдельных зернах возникают перенапряжения и создаются возможности появления микротрещин. При этом в случае напряжений, вызванных статическими нагрузками, подобные микротрещины не опасны. Если же напряжения переменны во времени, то имеет место тенденция к развитию микротрещин, приводящая в конечном итоге к усталостному излому детали.  [c.654]

Серенсен Сергей Владимирович (1905—1977). лауреат Государственной премии СССР, академик АН УССР, известный ученый в области механики, ведущий эксперт по вопросам прочности и анализу разрушения конструкций. Разработал критерии усталостной прочности материалов и несущей способности элементов конструкций с учетом характера цикла напряжений, вида напряженного состояния и конструктивно-технологических факторов. Один из основоположников развития в нашей стране науки о сопротивлении материалов при повторно-переменных нагрузках.  [c.655]

Сопротивление материалов усталостному разрушению характеризуют кривой усталости, которую можно построить, если испытать серию одинаковых образцов, подвергающихся периодическому нагружению в одинаковых внешних условиях, но с различной амплитудой напряжений. По оси абсцисс откладывается максимальное количество циклов N, которое выдерживает образец до разрушения, а по оси ординат — максимальное значение напряжения р, осуществляемое в этих циклах. ТипичнаяJ кpивaя усталости приведена на рис. 146.  [c.420]

Бор. Волокна бора характеризуются высоким сопротивлением сжатию наряду с высоким удельным модулем. Это позволяет использовать их, в особенности для конструкций, работающих под давлением (с ограниченной устойчивостью) и обладающих высокой жесткостью. Свойства волокон высоко стабильны. Благодаря высокому модулю упругости бора в полимерной матрице возникают низкие напряжения. Волокна имеют хорошую адгезию к связующему (матрице), что подтверждают высокие результаты стандартных испытаний на межслоевой сдвиг по методу короткой балки. Сочетание этих свойств ведет к повышению усталостной прочности волокнистых материалов с применением бора, составляющей, как правило, 70% от предельного значения кратковременной йрочно-сти для одноосноармироваиных материалов.  [c.83]


В работах [51, 58] подробно рассмотрено влияние отношения модулей упругости двух разнородных материалов на распределение упругих напряжений у конца трещины, когда она перпендикулярна плоской поверхности раздела двух материалов и конец трещины лежит на этой поверхности. Несколько позднее Леве-ренц [38] определил коэффициенты интенсивности напряжений для аналогичного случая, когда трещина располагалась вблизи поверхности раздела, но не доходила до нее. Результаты этих исследований помогают, в частности, понять механизмы усталостного разрушения армированных волокнами металлов они показывают, что поверхности раздела волокон и матрицы сильно влияют на вид распространения усталостных трещин и на механизмы усталостного разрушения композитов. Они также подсказывают, по-видимому, плодотворную область исследований по улучшению сопротивления композитов усталостному разрушению, а именно конструирование и управление структурой и прочностью границ раздела.  [c.412]


Смотреть страницы где упоминается термин Материалы Сопротивление усталостному напряжению : [c.336]    [c.110]    [c.144]    [c.209]    [c.10]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.471 ]



ПОИСК



173 — Материалы 179 — Напряжения

Напряжения усталостные

Сопротивление материало

Сопротивление материалов

Усталостная



© 2025 Mash-xxl.info Реклама на сайте