Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие классические понятия Общие уравнения

Переходя к составлению общих уравнений динамики жидкосги или газа, начнем с вывода уравнения неразрывности (сплошности). Будем исходить из основного закона классической механики о сохранении массы при ее движении используя понятие индивидуальной производной, можем написать  [c.90]

В заключение этого параграфа сделаем следующее общее замечание о законах сохранения. Формулировка каждого из этих законов имеет следующий вид некоторое выражение, зависящее от координат точек и их скоростей, при движении системы не меняется . Эти выражения не зависят от ускорений точек и в этом смысле являются первыми интегралами уравнений движения. В дальнейшем (см. гл. VII) мы вернемся к понятию первый интеграл и дадим его точное определение. Там же будет показано, что найденные выше первые интегралы — законы сохранения — являются следствиями основного предположения классической механики об однородности и изотропности пространства и об однородности времени (см. гл. VII). Отложив поэтому уточнение этого понятия до гл. VII, мы в 7 настоящей главы на важном примере продемонстрируем, как классическая механика использует законы сохранения для того, чтобы упростить (а в некоторых случаях и решить) дифференциальные уравнения, описывающие движение.  [c.77]


Мы видим здесь отражение того общего факта, что хотя микромир имеет свои собственные специфические закономерности, представляя собой качественно своеобразную форму, но его специфичность не абсолютна. Микромир внутренне связан с макромиром. В известных пределах мы можем непосредственно пользоваться для изучения явлений микромира понятиями и соотношениями, полученными как обобщение макроскопического человеческого опыта. Гейзенберг указывает, что в квантовой механике математическая схема в конце концов внешне похожа на классическую теорию и отличается от последней только наличием перестановочных соотношений, при помощи которых, впрочем, уравнения движения могут быть выведены из функции Гамильтона ).  [c.822]

В учебнике (2-е изд.— 1978 г.) рассматриваются статистическое обоснование основных понятий и полевых функций механики сплошной среды (МСС), даны теория деформаций, напряжений и процессов деформации и нагружения в окрестности точки тела, законы сохранения и функциональные представления термодинамических функций, теория определяющих соотношений и уравнений состояния, замкнутые системы уравнений МСС и общие постановки краевых задач. Даны общие преобразования квазилинейных уравнений МСС, упрощающие анализ и нахождение их решений. Подробно излагаются теория классических сред, сред со сложными физическими свойствами, описано действие электромагнитного поля, а также дана теория размерности и подобия с примерами ревизионного анализа уравнений МСС.  [c.2]

Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]


Позже В. 3. Власов (1944) представил упрощенные уравнения общей линейной теории в форме, аналогичной классической форме уравнений пластинок теории Кармана,— здесь все искомые величины выражены через одну функцию напряжения (плоской задачи) и функцию прогиба срединной поверхности. В этой же работе Власов ввел также общеизвестное теперь понятие пологой оболочки расчет пологой оболочки проводится в предположении, что главные кривизны оболочки постоянны, а срединная поверхность может быть задана в евклидовой метрике (отметим, кстати, что этот вариант стал, после соответствующих обобщений, наиболее популярным также при постановке и решении геометрически нелинейных задач теории оболочек).  [c.229]

В основу настоящей книги положен курс лекций по классической механике, читавшийся автором на физическом факультете Московского государственного педагогического института им. В. И. Ленина на протяжении последних 20 лет. Книга написана в полном соответствии с новой программой по курсу теоретической физики для физических специальностей педагогических институтов, утвержденной Министерством просвещения СССР в 1977 г., в которой механика рассматривается как первый и важнейший раздел единого курса теоретической физики. Поэтому в книге особое внимание уделено принципиальным вопросам классической механики — ее основным понятиям и законам принципам относительности и причинности законам сохранения и их связи с симметрией пространства-времени вариационным принципам механики и общим методам получения первых и вторых интегралов уравнений движения методам качественного исследования поведения механических систем и ее связи с другими разделами современной физики.  [c.3]

Однако наиболее важное значение уравнения (10.6) состоит в том, что оно полностью описывает поступательное движение любой механической системы, при котором все ее частицы перемещаются по параллельным (и в общем случае — криволинейным) траекториям. Поэтому уравнение (10.6) лежит в основе такого важного понятия классической механики, как понятие о материальной точке.  [c.71]

Используя лишь основные понятия операционного исчисления, мы хотим просто и в то же время в достаточно общем виде показать здесь (базируясь на классической теории линейных дифференциальных уравнений второго порядка), как появляется интеграл, выражающий принцип линейной суперпозиции.  [c.15]

Итак, большинство эффектов, наблюдающихся в не описываемых классическими уравнениями пограничного слоя Прандтля ламинарных течениях, например, таких, как течения с отрывом, достаточно хорошо поняты теоретически. В общем случае в потоке возникают вязко-невязкие структуры, причем области течения вне и внутри пограничного слоя воздействуют друг на друга на относительно коротких масштабах длины. Несмотря на впечатляющие успехи асимптотического подхода и наличие ряда законченных результатов, данный круг явлений продолжает оставаться в фокусе внимания, о чем свидетельствуют многочисленные публикации последнего десятилетия. Интерес исследователей привлекает, во-первых, возможность приложений основных идей развитых теоретических методов к более сложным процессам (резонансные тройки, трехмерные пограничные слои, высокочастотные осцилляции в потоке, взаимодействие сильно нелинейных возмущений различных типов, ранние стадии ламинарно-турбулентного перехода)  [c.7]

В ней путем анализа диаграмм выведено общее классическое основное кинетическое уравнение (16.3.23). Это уравнение является немарковским и содержит член, зависящий от начальных условий. Было показано, что в пределе больших времен оно переходит в общее марковское кинетическое уравнение, рассмотренное в настоящей главе ). В той же работе были введены понятия операт ов столкновения, разрушения и рождения. Эти результаты были также обобщены на квантовый случай см.  [c.218]

Вторая группа уравнений представляет запись определенных физических законов, описывающих поведение конкретных материалов. Вид этих уравнений зависит от класса рассматриваемых материалов значения параметров, появляющихся в уравнениях, зависят от конкретного материала. Имеются в основном четыре уравнения этой группы. В недавнем весьма общем подходе Коле-мана [1—3]рассматриваются уравнения, в точности определяющие следующие четыре зависимые переменные внутреннюю энергию, энтропию, напряжение и тепловой поток. Этот подход будет обсуждаться в гл. 4. На данном этапе мы предпочитаем значительно менее строгий подход, в котором используются понятия, взятые из классической термодинамики. При таком упрощенном подходе по-прежнему используютсячетыреуравнения, описывающие поведение рассматриваемых материалов термодинамическое уравнение состояния, которое представляет собой соотношение между плотностью, давлением и температурой реологическое уравнение состояния, связывающее внутренние напряжения с кинематическими переменными уравнение для теплового потока, связывающее тепловой поток с распределением температуры уравнение, связывающее внутреннюю энергию с существенными независимы-  [c.11]


Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]

Итак, основы классической механики полностью даны Ньютоном во вступительной части его Начал кроме того, на основе общего понятия силы как причины изменения состояния покоя или движения, сформулированы две основные задачи механики, из которых одна требует применения дифференцирования, вторая — интегрирования (функций и уравнений)/". В связи с этим в Началах Ньютон ставит перед собою еще две задачи дать математический аппарат для механики, основанной на его законах, и оправдать принятую им пространственно-временную схему, без которой содержание его законов (первых двух) лишается определенности. Математический аппарат, применяемый в Началах , изложен в первом разделе книги под названием метода первых и последних отношений. Метод можно назвать геометрическим вариантом исчисления бесконечно малых, притом вариантом, лишенным алгоритлшческой стройности. Не будем обсуждать причины, в силу которых Ньютон предпочел его собственному алгоритму флюксий и флюент, разработанному им на 20 лет раньше. Для судьбы научного наследия Ньютона существенно то, что на три года раньше Лейбниц опубликовал свой значительно более удобный алгоритм.  [c.118]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]

В механике жидкости и газа, напротив, был получен ряд важных общих результатов. Так, было введено четкое понятие давления в идеальной жидкости (И. Бернулли, Л. Эйлер), разработаны некоторые общие положения гидравлики идеальной жидкости, в том числе получены уравнение Бернулли (Д. и И. Бернулли, Л. Эйлер) и теорема Борда. Наконец, благодаря главным образом трудам JI. Эйлера были заложены основы гидродинамики идеальной (капельной и сжимаемой) жидкости. Замечательно, что уравнения гидродинамики были построены Эйлером при помощи вполне современного континуального подхода. Тут к его результатам трудно что-либо добавить ив 47 наши дни (конечно, если не касаться термодинамической стороны вопроса). Однако блестящая по стройности построения общая гидродинамика идеальной жидкости оказалась в XVIII в. лигпенной каких-либо приложений, если не считать акустики, опиравшейся в то время на представления И, Ньютона, эквивалентные предположению об изотермичности процесса распространения звука. Опередивйхие более чем на век требования времени, континуальные представления Эйлера в гидродинамике идеальной жидкости нуждались лишь, казалось бы, в небольшом обобщении — последовательном введении касательных напряжений,— для того чтобы обеспечить построение основ всей классической механики сплошной среды. Но, по-видимому, именно опережение Эйлером своей эпохи и практических запросов того времени повлекло за собой то, что толчок к дальнейшему развитию механики сплошной среды дали только через три четверти века феноменологические исследования, основанные на молекулярных представлениях. Чисто континуальный подход, основанный на идеях Эйлера и Коши, был последовательно развит англ [йской школой в 40-х годах и завоевал полное признание только в последней трети XIX в.  [c.47]


Впервые общая картина поведения различных гироскопических систем с быстро вращаюищмся симметричным ротором была, как уже упоминалось, обрисована в классических докладах Л. Фуко, а затем — в фундаментальной монографии В. Томсона и П. Тэта. Следующим шагом в развитии механики гироскопических устройств, позволившим перейти к количественному изучению их движения, был четырехтомный труд Ф. Клейна и А. Зоммер-фельда . Наряду с подробным изложением случаев интегрируемости уравнений движения твердого тела здесь впервые четко формулируется понятие <бкстрого динамически симметричного гироскопа, указывается, что он может совершать псевдорегулярную и вынужденную прецессию, и даются обоснованные количественные оценки угловых ошибок, с которыми следует Считаться, полагая, что вектор кинетического момента гироскопа совпадает с осью его фигуры, т. е. пользуясь допущением прецессионной теории. Авторы впервые изучают влияние трения в опоре и сопротивления среды на движение быстро вращающегося гироскопа. В четвертом томе этой работы имеются также результаты исследования различных конкретных гироскопических устройств, в частности, гиростабилизаторов непосредственного действия, о чем будет сказано особо.  [c.168]

Работа состоит из шести глав. Первая глава посвящена разбору возможностей, предоставляемых классической механикой для решения названной основной задачи, и критике относящихся сюда работ, основанных на классической механике. Вторая глава посвящена аналогичному рассмотрению в квантовой механике. В третьей главе разбирается вопрос об описании немаксимально полных опытов, в частности об условиях применимости понятия статистического оператора матрицы плотности). В четвертой главе выводятся некоторые ограничения, которые накладываются на возможности измерений, производимых над макроскопическими системами, условием сохранения их заданной макроскопической характеристики. Значительная часть вопросов, затронутых в третьей и четвертой главах, заключается в получении свойств релаксации, Я-теоремы и т. д.— утверждений макроскопических, т. е., казалось бы, не связанных с вопросами о возможностях измерения. Поэтому, чтобы при решении поставленной в работе задачи не казалось странным возникновение этих вопросов, отметим сразу же, что самая суть поставленной задачи заключается в выяснении связи макроскопических утверждений с микромеханикой, а уравнениям последней можно, как известно, придать физический смысл лишь в связи с возможностями измерений. Пятая глава посвящена общим понятиям о релаксации физических систем, об j/У-теореме и о средних во времени значениях физических величин. В шестой главе выясняется связь между существованием релаксации и определенными свойствами гамильтониана системы.  [c.16]

Действительно, понятие вероятности вообще может быть введено в картину классической механики чисто внешним образом, в том смысле, что хотя и можно, например, предпо-ложить, что микросостояния в фазовом пространстве распределены по определенному вероятному закону, но нельзя в терминах классической механики определить те физические условия, при которых этот закон распределения будет проявляться на опыте. Иначе говоря, в классической механике не может быть определена соответствующая данному понятию вероятности категория испытаний, не могут быть определены соответствующие условия опы-т а. Все применения теории вероятностей характеризуются некоторой принципиальной однородностью уело-ВИЙ испытаний, приводящих, вообще говоря, к различным результатам. Эта однородность выражает то общее свойство испытаний, которое характеризуется одинаковым для всех испытаний распределением вероятностей. В случае максимально полного опыта в квантовой механике эта принципиальная однородность выражается полной принципиальной тождественностью условий опытов, производимых с одинаковыми Т-функциями. Наоборот, в классической механике в силу отмеченной в 11 однозначности уравнений, результаты испытания и условия опыта содержат одно и то же. Если, например, испытание заключается в определении положения системы в фазовом пространстве в момент t = то очевидно, что результаты испытания однозначно определяются условиями опыта при t = так как в терминах классической механики эти условия могут задаваться лишь при помощи точного или приближенного задания положения системы в этот момент Результаты испытаний целиком определяются подбором условий опытов и содержат ровно столько же, сколько и эти условия. Очевидно, что тождество условий испытаний и результатов  [c.64]

Райнера ), Ривлина ) и Трусделла З) привело к определяющим уравнениям общего вида, включающим в себя в качестве частного случая классический закон Коши — Пуассона и охватывающим все. известные типы непрерывной среды. Был значительно усовершенствован также вывод определяющих уравнений. В первом параграфе этой главы устанавливается четкая система условий, которым должно удовлетворять поведение жидкости при ее деформациях. В качестве прямого следствия этой системы аксиом мы получаем определяющие уравнения. Простота логической структуры вывода определяющих уравнений позволяет при этом глубже понять математическую сторону вопроса об определении понятия жидкости. Теория, построенная на основе указанной схемы рассуждений, учитывает нелинейные эффекты вязкости, которые могут играть большую роль в некоторых сложных случаях, таких, как исследование ударного слоя, пограничного слоя и полетов на больших высотах.  [c.194]

Если, далее, пренебречь поглощением, то макрополе можно нроквантовать согласно общим правилам перехода от классических уравнений движения к квантовым ( 2.1). Мы сперва рассмотрим общий случай поглощающей однородной среды и определим функцию Грина уравнений Максвелла в г и А (о-представ-лениях. Последняя понадобится нам для описания рассеяния света на поляритонах и позволит ввести понятия нормальных волн, ортов поляризации и закона дисперсии.  [c.102]

Рассматриваемый общий подход имеет еще одно преимущество. Он привлекает особое внимание к величине (11.90) и к уравнениям (11.81) и (11.91). Величина %1а> хорошо известна в классической механике как адиабатический инвариант для медленных модуляций линейной колебательной системы. В дальнейшем мы покажем, что Х является аналогичной величиной в нелинейном случае. Таким образом, эти понятия обобщаются на случай волнового движения. Вместо инварианта мы имеем уравнение сохранения (11.81), характеризуемое времениподобной адиабатической величиной Ха и пространственноподобными величинами —Х, .-Это уравнение сохранения получило название закона сохранения волнового действия .  [c.380]


Смотреть страницы где упоминается термин Общие классические понятия Общие уравнения : [c.270]    [c.123]    [c.178]    [c.41]    [c.234]    [c.33]    [c.62]    [c.251]    [c.203]   
Смотреть главы в:

Теория вихрей  -> Общие классические понятия Общие уравнения



ПОИСК



Газ классический

Общие понятия

Общие уравнения

ОтрОбщие классические понятия Общие уравнения



© 2025 Mash-xxl.info Реклама на сайте