Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение стержней (общая теория)

Кручение стержней (общая теория)  [c.243]

При несвободном (стесненном) кручении, когда депланация сечений затруднена, приведенные выше формулы непригодны. Общая теория стесненного кручения тонкостенных стержней открытого профиля разработана В. 3. Власовым. Он показал, что при стесненном кручении кроме касательных напряжений чистого кручения, вычисляемых по приведенным выше формулам, в поперечном сечении возникают значительные дополнительные касательные и нормальные напряжения. Изложение теории стесненного кручения тонкостенных стержней выходит за пределы краткого курса сопротивления материалов.  [c.123]


Учебник для вузов, в которых сопротивление материалов изучается по полной программе. Книгу в целом отличает глубоко продуманная последовательность изложения - от частного к общему - и разумное повторение материала, позволяющее глубже вникнуть в существо вопроса. В первой части дается традиционный курс сопротивления материалов в элементарном изложении. Во второй части приводятся дополнения по некоторым вопросам, рассмотренным в первой части, а также рассматриваются задачи, требующие применения методов теории упругости. Таковы, например, задачи о кручении стержней, о местных напряжениях, об изгибе пластинок, о кручении тонкостенных стержней. Для возможности более обоснованной трактовки таких задач в книгу включен раздел, посвященный основным уравнениям теории упругости и некоторым наиболее простым задачам этой науки.  [c.234]

В разделе II (главы 6—8) рассматриваются общие вопросы классической теории упругости обобщенный закон Гука, постановка и методы решения задач теории упругости, вариационные принципы и методы, плоская задача теории упругости в декартовых и полярных координатах, кручение стержней.  [c.4]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]

Как следует из общей теории, поперечные сечения стержня остаются при кручении плоскими только тогда, когда стержень представляет собою круговой цилиндр. Во всех других случаях происходит искажение поперечного сечения, так называемая де-  [c.312]

В 1900 г. Людвиг Прандтль, занимаясь вопросами общего машиностроения, блестяще защитил докторскую диссертацию на тему О кручении стержня . С вопросами гидродинамики Прандтль столкнулся, работая на машиностроительном заводе в Нюрнберге (МАН). Трехлетние исследования гидродинамики диффузоров завершились созданием теории пограничного слоя.  [c.7]


Задача о стесненном кручении двутавра впервые была поставлена и решена проф. С. П. Тимошенко в 1905 г. ). Однако подобные задачи привлекли внимание инженеров и исследователей лишь с конца 20-х годов, в связи с развитием авиастроения и внедрением в строительство тонкостенных конструкций. Большой вклад в теорию расчета тонкостенных стержней и оболочек внесли и советские ученые, в частности проф. В. 3. Власов, предложивший общую теорию расчета тонкостенных стержней открытого профиля (1939 г.) ). В последующие годы эта теория получила дальнейшее развитие и  [c.183]

ЭТИМИ уравнениями в исследовании деформаций прямоугольных стержней. В особенности его заинтересовывает задача кручения прямоугольного стержня, причем ему удается найти удовлетворительное решение для стержня узкого прямоугольного поперечного сечения. Он показывает, что поперечные сечения стержня, подвергающегося кручению, как общее правило, не остаются плоскими, но коробятся. Заключения, к которым пришел Коши, были использованы впоследствии Сен-Венаном, сформулировавшим более полную теорию кручения призматических стержней (см. стр. 283).  [c.136]

Изложив общую теорию, авторы применяют свои уравнения в ряде частных случаев. Они показывают, каким образом единственную входящую в их уравнения упругую постоянную можно получить опытным путем из испытаний на растяжение или на равномерное сжатие. Далее, они ставят перед собой задачу о полом круговом цилиндре и выводят формулы для напряжений, вызываемых равномерным внутренним или внешним давлением. Эти формулы используются для вычисления необходимой толщины стенок цилиндра при заданных значениях давлений. В своих исследованиях они пользуются теорией наибольшего напряжения, но предусмотрительно обращают внимание на то, что каждый элемент цилиндра находится в условиях двумерного напряженного состояния и что предел упругости, определенный из испытания на простое растяжение, может оказаться неприменимым к этому более сложному случаю. Следующими вопросами, разобранными в этой части их работы, являются задачи о простом кручении круглого стержня, о сфере, подвергающейся действию сил тяжести, направленных к ее центру, и о сферической оболочке, нагруженной равномерно распределенным внутренним или наружным давлением. Для всех этих случаев авторами выводятся правильные формулы, которые с тех пор нашли разнообразные применения в технике.  [c.142]

III. КОЛЕБАНИЯ КРУЧЕНИЯ ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ 6. Общая теория  [c.153]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]

Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]


В этих работах ) Сен-Венан, основываясь на уравнениях теории упругости, дал общее решение поставленных еще Галилеем и Кулоном проблем изгиба и кручения стержней.  [c.11]

B. 3. Власова, в которых дана общая теория изгиба, кручения и устойчивости тонких оболочек и тонкостенных стержней с незамкнутым профилем сечения ).  [c.672]

Определение неизвестных силовых факторов в общем случае требует решения системы канонических уравнений и представляет трудоемкую задачу. Лонжероны и поперечины в конструктивном отношении представляют тонкостенные профили. Расчет, таких профилей на кручение имеет существенные особенности. Поперечные сечения стержней при кручении искривляются и становятся неплоскими, происходит так называемая депланация.- Соединения поперечин с лонжеронами препятствуют их депланации. В результате при кручении тонкостенных стержней кроме касательных напряжений возникают нормальные напряжения стесненного кручения, которые необходимо учитывать. Поэтому расчет рам на кручение базируется на теории тонкостенных профилей [ХУП.2,6].  [c.496]

Изложенная выше теория кручения брусьев с круглым сечением была разработана в конце ХУП в. французским ученым военным инженером Кулоном (1736—1806 гг.). В современном ее виде она была изложена в книге Навье, которому принадлежит и первая попытка разработать теорию кручения бруса некруглого сечения. Эта задача была разрешена только в 1855 г. французским ученым Сен-Венаном (1797—1886 гг.), впервые давшим строгий метод решения задачи о кручении бруса с произвольным поперечным сечением и приложившим его ко многим частным случаям, например к прямоугольному сечению. Значительный вклад в общую теорию кручения был сделан в работе русского ученого доцента Московского университета А. А. Соколова, изданной в 1878 г. В этой работе была, в частности, доказана важная теорема о том, что наибольшие напряжения при кручении бруса с любым поперечным сечением никогда не могут быть в точках внутри стержня, а  [c.129]

Таким образом, между проекциями вектора смещения Д и проекциями вектора поворота д, в области малых перемещений, установлены три дифференциальных соотношения (35). Параметрами в них служат главные компоненты кривизны и кручение недеформированного стержня, рассматриваемые как функции дуги з. Эти выражения представляют собой первую группу геометрических соотношений общей теории упругой линии пространственных стержней.  [c.851]

Параметрами здесь также служат главные компоненты кривизны и кручение недеформированного стержня, рассматриваемые как функции дуги 5. Эти выражения представляют собой вторую группу геометрических соотношений общей теории упругой линии пространственных стержней.  [c.852]

ОБЩАЯ ТЕОРИЯ КРУЧЕНИЯ И ИЗГИБА ТОЦКИХ СТЕРЖНЕЙ.  [c.11]

Задача Сен-Венана о равновесии упругого призматического стержня под действием произвольной нагрузки, заданной на его торцах, является одной из важнейших задач теории упругости, поскольку ее решение дает возможность оценить точность элементарной теории изгиба, рассматривающейся в сопротивлении материалов, а также позволяет исследовать представляющую значительный практический интерес проблему кручения стержней, которая не может быть решена элементарными приемами. Задача Сен-Венана (в общей ее постановке) является, кроме того, одной из труднейших задач теории упругости. С математической точки зрения она решена далеко не полно. Однако в силу так называемого принципа Сен-Венана имеющееся ее решение, излагаемое ниже, может рассматриваться (хотя и с некоторыми оговорками) как исчерпывающее вопрос.  [c.236]

Все эти простые результаты были получены значительно раньше, чем были выведены уравнения общей теории кручения. Как видно, в данном случае сечения стержня при кручении остаются плоскими, что явилось поводом для попытки экстраполяции этого закона на все остальные формы поперечных сечений.  [c.256]

Поттытка построения более общей теории кривых стержней дана О. Б. Голубевым [23], который учитывал деформацию сдвига сечения относитёльно оси, но допускал,.что депланация сечения пропорциональна функции кручения.  [c.77]

Теорема 3.1 доказывается в следующих параграфах для наиболее типичных канонических задач. В число однородных решений, естественно, входят решения Сен-Венана, которыми мы будем в общем случае называть однородные решения, дающие конечные главный вектор и главный момент. Эти решения получаются из обычной теории изгиба, растяжения и кручения стержней, а также отвечают решениям задач о сосредоточенной силе и сосредоточенном моменте в вершине клина и в вершине конуса (в случае слоя рехиение Сен-Венана соответствует чистому изгибу и однородному растяжению). Однородные реще-ния, не являющиеся решениями Сен-Венана, по определению дают главный вектор и главный момент, равные или нулю, или бесконечности.  [c.55]

Э. Хвалла ) исследовал поперечное выпучивание балок несимметричного профиля и дал общий вид уравнений, из которых уравнения для двутавровой балки получаются как частный случай. Автор настоящей книги изложил общую теорию изгиба, кручения и устойчивости тонкостенных элементов открытого профиля ). В. 3. Власов развил в своей книге ) иной метод подхода к теории устойчивости, указав, что для тонкостенных стержней принцип Сен-Вена на теряет силу и что, например, в элементе зетового профиля можно вызвать кручение, приложив по торцам к его полкам изгибающие моменты.  [c.495]

Еще в 1828 г. Коши и Пуассон применили общие уравнения для оценки пригодности элементарной теории изгиба тонких стержней, а в следующем году Коши вывел приближенные формулы для кручения тонких прямоугольных стержней. Эти исследования Коши дали толчок для развития Сен-Ве-наном общей теории изгиба и кручения призматических стержней, явившейся крупнейшим практическим достижением теории упругости в середине XIX в.  [c.55]


В первой части курса излагается общ ая теория напряженного и деформированного состояния. Выводятся дифференциальные уравнения равновесия в напряжениях и перемещениях для трехмерной изотропной среды. Принцип возможных перемещений применяется для изотропного зшру-гого тела. При помощи методов, применяемых в курсе сопротивления материалов, исследуются растяжение, кручение и изгиб стержней. Как частный случай общей теории приводятся общие соотношения для плоской деформации и плоского напряженного состояния. Дано решение дифференциальных уравнений плоской задачи в целых полиномах, а также в гиперболотригонометрических функциях применительно к изгибу тонкой полосы. Разбирается случай полярных координат. Описано применение энергетического метода к плоской задаче.  [c.5]

Рассматривается развитие метода малого параметра применительно к упруго-пластическим задачам теории идеальной пластичности. В настоящее время имеется сравнительно небольшое число точных и приближенных решений упруго-пластических задач теории идеальной пластичности, поскольку возникаюш,ие здесь математические трудности весьма велики. Впервые задачу о распространении пластической области от выреза, вызываюш,его концентрацию напряжений в сечении скручиваемого стержня, решил Треффтц [1]. Он рассматривал уголковый контур и при решении задачи использовал метод конформного отображения. Несколько ранее Надаи [2] была предложена песчаная аналогия, позволившая в соединении с мембранной аналогией Прандтля осуш ествить моделирование задач упруго-пластического кручения стержней. В. В. Соколовский [3] рассмотрел задачу об упруго-пластическом кручении стержня овального сечения ряд решений задач о кручении стержней полигонального сечения был дан Л. А. Галиным [4, 5]. Большая литература посвящена одномерным упруго-пластическим задачам отметим работы [2, 3, 6-8]. Точное решение неодномерной задачи о двуосном растяжении толстой пластины с круговым отверстием было дано Л. А. Галиным [9], использовавшим то обстоятельство, что функция напряжений в пластической области является бигармониче-ской. Там же Л. А. Галин рассмотрел случай более общих условий на бесконечности. Впоследствии Г. Н. Савин и О. С. Парасюк [10-12 рассмотрели некоторые другие задачи об образовании пластических областей вокруг круглых отверстий.  [c.189]

Широко развившееся в XX в. применение конструкций из тонкостенных стержней, работающих на изгиб, выявило недостаточность классической теории для точного расчета таких стержней. Заслуга разработки общей теории изгиба тонкостенных стержней принадлежит советскому ученому, лауреату Государственных премий В. 3. Власову. Формула нормальных напряжений при поперечном изгибе тонкостенных стержней по теориии Власова отличается от обычной формулы (128) наличием в ней члена, учитывающего влияние изгибного кручения. Гипотеза плоских сечений является только частным случаем более общей гипотезы, лежащей в основе теории В. 3. Власова.  [c.207]

В настоящей главе изложены основные общие положения и частные случаи упругого равновесия, которые названы обобщенным кручением и при развитой упругой симметрии переходят в обычное или чистое кручение стержней с прямолинейной осью. Теория обобщенного кручения впервые разработана Фойгтом [38], строгая теория чистого кручения — Сен-Венаном [121]. 11о теории простого или чистого кручения известно очень много работ и среди них — большая монография Н. X. Арутю-няна и Б. Л. Абрамяна [4]. В этой монографии указана обширная литература по кручению, собранная в аннотированные списки. Есть и у нас монография, посвященная кручению [22].  [c.258]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]

Общая теория кручения и изгива тонких стержней  [c.406]

Общее понятие о теории стесненного кручения стержней открытого профиля (теории Власова). Основные допуп ення  [c.321]

Само понятие о стесненном кручении стержня уже было дано выше (см. 11.1). Здесь следует добавить, что развитие инженерной теории стесненного кручения оказалось особенно необходимым для стержней с незамкнутым контуром сечения, которые находят широкое применение в строительстве, кораблестроении, авиастроении и т. д. Дело в том, что возникающие при стесненном кручении нормальные напряжения в таких стержнях мо-г иметь большие значения и оказывают существенное влияние на их прочность и жесткость. Общая теория деформирования тонкостенных стержней открытого профиля создана чл.-кор. АН СССР В. 3. Власовым, выда-юпщмся ученым, внесшим крупный вклад в строительную механику тонкостенных конструкщш и оболочек.  [c.321]



Смотреть страницы где упоминается термин Кручение стержней (общая теория) : [c.133]    [c.211]    [c.283]    [c.47]    [c.182]    [c.96]    [c.182]    [c.262]    [c.20]    [c.509]   
Смотреть главы в:

Теория упругости  -> Кручение стержней (общая теория)



ПОИСК



Кручение стержней

ОБЩАЯ ТЕОРИЯ ИЗГИБ И КРУЧЕНИЕ СТЕРЖНЕЙ ПЛОСКАЯ ЗАДАЧА. ТЕЛА ВРАЩЕНИЯ НАПРЯЖЕНИЯ Внешние силы

Общее понятие о теории стесненного кручения стержней открытого профиля (теории Власова). Основные допущения



© 2025 Mash-xxl.info Реклама на сайте