Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская задача и осесимметричная деформация Плоская деформация

ПЛОСКАЯ ЗАДАЧА И ОСЕСИММЕТРИЧНАЯ ДЕФОРМАЦИЯ. 77. Плоская деформация.  [c.188]

В качестве примеров расслоенного ноля напряжений можно привести осесимметричную задачу и задачу о плоской деформации. Действительно, любое  [c.452]

Для—решения этой задачи воспользуемся формулами для напряжений (6.35), полученными из общего решения осесимметричной задачи в перемещениях. Так как наша задача относится к случаю плоской деформации, то уравнения для напряжений должны включать упругие постоянные и VJ согласно формулам Рис. 35 (5.6), т. е. иметь такой вид  [c.102]


Если материал является квазиупругим, то функции S(k,k) и 8з к, к) будут теми же, что и в случае плоской деформации, наложенной иа осевое растяжение. При осесимметричной деформации эти функции зависят от пространственных координат не только через параметр к, но и через параметр X — rlR), в данной задаче меняющийся от точки к точке.  [c.342]

Краткая характеристика основных серий расчетов. Численный эксперимент представлен 48 сериями (153 расчетами) (табл. 2.3). В таблице приведены три типа двумерных задач I — осесимметричная деформация (41 серия), II — плоская деформация (6 серий) и III — плоское напряженное состояние (одна серия).  [c.88]

Для решения воспользуемся формулами напряжений (7.35), полученными из общего решения осесимметричной задачи в перемещениях. Так как рассматриваемая задача относится к случаю плоской деформации, то указанные формулы должны включать упругие постоянные El и Vj. Согласно обозначениям (6.6), имеем  [c.105]

Показано, что нелинейные эффекты деформации слоя и слоистых конструкций, наблюдаемые уже при малых деформациях, объясняются деформационной анизотропией резины и проявляются Через уравнения равновесия. Рассмотрены некоторые частные задачи — плоская и осесимметричная деформация, в том числе кручение слоя. Даны примеры решения краевых задач.  [c.29]

Введение. Контактные задачи теории идеальной пластичности о начальном течении полупространства при давлении штампов при плоской и осесимметричной деформации [1-4] используются для моделирования испытаний пластических материалов на твердость и для расчетов предельных режимов прокатки, волочения и ковки заготовок [5, 6] и несуш,ей способности деталей машин [7].  [c.582]

Здесь, подобно работе [4], учитывается аналогия между задачами о плоской и осесимметричной деформации.  [c.249]

В настоящей главе представлены методы и алгоритмы, реализованные на ЭВМ, решений перечисленных деформационных задач в двумерной [плоской (плоское напряженное состояние, плоская деформация) и осесимметричной] постановке проведены сопоставления расчетных, аналитических и экспериментальных данных.  [c.12]

Разработанный метод [27, 28, 65, 67, 70, 86, 92, 203, 204] позволяет определять траекторию усталостной трещины, интенсивность высвобождения упругой энергии и КИН I и II рода в элементе конструкции с неоднородным полем рабочих и остаточных технологических напряжений с учетом их перераспределения по мере развития разрушения, а также возможного контактирования берегов трещины. Рассматриваются математически двумерные задачи (плоское напряженное состояние, плоская деформация, осесимметричные задачи), решение которых базируется на МКЭ.  [c.200]


Если полагать, что пластинка относится к классу жестких пластин и прогибы ее достаточно малы, так что величиной йш/йгУ по сравнению с производной и/<1г можно пренебречь, то относительные деформации срединной поверхности е . Ее, 7 0 будут иметь такие же выражения, как и в случае плоской осесимметричной задачи в полярной системе координат  [c.139]

Осесимметричная деформация без кручения исследуется в разд. V. Решение задач этого типа труднее, нежели решение задач о плоской деформации, но нам удалось показать, что и для осесимметричного случая справедлив один из наиболее важных результатов, относящийся к плоской деформации, а именно для любого кинематически допустимого поля деформации существует отвечающее этой деформации статически допустимое поле напряжений.  [c.290]

Наши успехи в решении задач о плоской деформации были обусловлены тем, что эти задачи обладали трансляционной симметрией в направлении, перпендикулярном плоскости деформации этому же обстоятельству мы обязаны определенными успехами и в решении осесимметричных задач. Мы вправе ожидать (как это имеет место и в других разделах математической физики), что при отсутствии симметрии какого-либо специального вида невозможно получить явные аналитические решения соответствующих задач. Существуют, однако, другие, до сих пор не рассмотренные нами классы симметричных задач, например задача об осесимметричном кручении. В качестве первого этапа решения таких задач мы кратко наметим общую теорию, не использующую никаких частных предположений о геометрии задачи.  [c.345]

Основанная на этих гипотезах теория. тонкостенных стержней открытого сечения рассматривалась рядом исследователей, но законченная форма ей была придана В. 3. Власовым [24]. Деформации тонкостенных кривых стержней в отличие от прямых сопровождаются существенными искажениями формы их сечения. Задача о чистом изгибе стержней с круговой осью описывается почти такими же уравнениями, как осесимметричная деформация оболочек,вращения. Для стержней малой кривизны эти уравнения могут быть упрощены. В 45 рассмотрены числовые методы расчета, а для стержней, составленных из цилиндрических и плоских стенок, приведены аналитические решения.  [c.408]

При осесимметричном температурном поле термонапряженное состояние цилиндра также будет осесимметричным, и для его исследования удобно, как и в 23, ввести функцию с которой напрян<ения связаны с соотношениями (23.4). В общем случае все механические характеристики материала , v и а являются функциями температуры T r,t), и задача сводится к определе-. нию X из уравнения (при плоской деформации)  [c.144]

Метод характеристик получил в последние годы большое распространение при решении плоских и осесимметричных задач для определения напряженного состояния в очаге деформаций. Сущность его заключается в том, что дифференциальные уравнения равновесия  [c.203]

Метод конечных элементов применяется в настоящее время к различным физическим задачам. Однако книга Галлагера концентрирует внимание читателя исключительно на приложениях к теории упругости и анализу конструкций. Это позволяет автору кроме теоретических основ метода последовательно и полно изложить материал, относящийся к решению осесимметричных и плоских задач теории упругости (случай плоской деформации и плоского напряженного состояния), задач теории оболочек и изгиба пластин, а также задач анализа упругой устойчивости.  [c.5]

В качестве примеров расслоенного поля напряжений можно привести осесимметричную задачу и задачу о плоской деформации. Действительно, любое осесимметричное, или плоское, векторное поле является расслоенным. Если ввести цилиндрические координаты г, (/ , 2 , то слоями осесимметричного ноля п будут новерхности, образованные вращением вокруг оси симметрии ортогональных нолю п траекторий, расположенных в плоскости (/9 = 0. Слоями плоского векторного поля являются цплиндрпческпе поверхности над ортогональными линиями ноля п.  [c.47]


Несмотря на значительные упрощения задачи для осесимметричного и плоского напряженного состояния и плоской деформации, для этих случаев также рещено ограниченное число задач.  [c.220]

Характеристические соотношения для напряжений и скоростей пе-ремеш ений пространственной задачи при условии полной пластичности приведены в [6], где показано, что известные соотношения для плоской и осесимметричной деформации являются частными случаями соотношений обш,ей пространственной задачи. Эти соотношения применены в [6] для решения задач о давлении плоских штампов различной формы в плане на идеально пластическое полупространство.  [c.73]

Введение. Поведение решений теории пластичности вблизи поверхностей трения, на которых удельные силы трения при скольжении равны пределу текучести при чистом сдвиге (условие максимального трения), обладает рядом характерных особенностей, которые, с одной стороны, могут приводить к трудностям при решении краевых задач, а с другой стороны, могут быть использованы для описания физических процессов в тонких слоях вблизи поверхности трения. По-видимому, первое исследование поведения решений в окрестности поверхностей максимального трения было выполнено в [1]. В этой работе была рассмотрена плоская деформация идеальножесткопластического материала, и анализ был основан на методе характеристик. Из результатов этой работы следует, что вблизи поверхности трения сдвиговая скорость деформации (в системе координат, связанной с поверхностью трения) и эквивалентная скорость деформации стремятся к бесконечности обратно пропорционально корню квадратному из расстояния до поверхности трения. Такое поведение поля скорости может быть получено из непосредственного анализа многих аналитических решений, начиная с известной задачи Прандтля (решение этой задачи можно найти в любой книге по теории пластичности, например [2]). Такое же поведение поля скоростей имеет место в осесимметричных решениях. Одно из наиболее известных решений — течение в бесконечном сходящемся канале [3]. Однако в случае осесимметричной деформации уравнения, вообще говоря, не являются гиперболическими (за исключением теории, основанной на условии текучести Треска, и других подобных теорий), хотя изолированные характеристические поверхности могут существовать [4]. Вследствие этого подход, развитый в [1], не мог быть применен для осесимметричных и пространственных задач. В [5-8] был использован другой подход для асимптотического анализа поля скоростей вблизи поверхностей максимального трения для различных условий течения и гладких условий текучести. Во всех этих работах получено, что закон поведения эквивалентной скорости деформации такой же, за исключением некоторых частных случаев, как и при плоской деформации. В [9 аналогичный результат был получен для осесимметричного течения материала, подчиняющегося условию текучести Треска.  [c.78]

Преобразования Мелера — Фока позволили Я. С. Уфлянду (1959) получить решение задачи об осесимметричной деформации неограниченного тела, содержащего плоскую щель, занимающую внешность некоторого круга заданного радиуса. Здесь получены решения как для случая симметричного, так и антисимметричного нагружения. В. В. Панасюк (1962) вернулся к рассмотрению этой задачи и определил возникающие при этом разрушающие нагрузки.  [c.385]

Лиалитические функции комплексного переменного вводятся на основе интегральных наложений, позволивших установить связь между компонентами пространственного напряженного и деформированного состояния с одной стороны и компонентами некоторых вспомогательных двумерных состояний — С другой. Для пространственных осесимметричных задач вспомогательным является состояние плоской деформации. Для пространственных задач без осевой симметрии вспомогательными являются плоская деформация и состояние, соответствующее депланации поперечных сечений цилиндров прй кручении. Рассматриваются различные виды интегральных наложений, осуществляемые путем вращения (для сплошных осесимметричных тел), путем линейных смещений (для тел с полостями) или при комбинации вращений и линейных смещений (для некруглых тел). Связи между пространственными и вспомогательными состояниями выражаются интегральными операторами (или найденными обращениями этих операторов).  [c.6]

При очень большом числе циклов нагоужения (порядка 10 -1 (г), характерном для транспортных ГТУ (судовых, авиационных), и температурах, при которых ползучесть металла в пределах полотна диска не играет существенной роли, представляется наиболее обоснованным требование практически полного отсутствия пластических деформаций во всех циклах (за исключением разве некоторого, относительно небольшого, количества первых циклов). Этому требованию проще всего удовлетворить при проектировании с использованием расчетов, основанных на теории приспособляемости. Поэтому такой подход в последнее время кладется в основу нормирования запасов прочности для циклических режимов (с учетом температурных напряжений), соответствующих наиболее часто встречающимся в эксплуатации маневрам ГТУ. При этом следует отметить, что в тех случаях, когда в пределах полотна диска имеют место значительные концентраторы напряжений (на ободе, у отверстий для крепления и т.д.), обычный его упругий расчет (лежащий в основе расчета дисков по теории приспособляемости) необходимо дополнять расчетом его по схеме плоской задачи или пространственной осесимметричной задачи теории упругости (например, методом конечных элементов) с тем, чтобы при нахождении условий приспособляемости учесть фактические значения напряжений в районе концентраторов. В тех случаях, когда диск ГТД работает при таких температурах, при которых уже нельзя пренебречь ползучестью его материала, расчет диска по теории приспособляемости (даже если в рамках этого расчета вместо предела текучести используется какая-либо другая характеристика материала, связанная с ползучестью, например предел ползучести сгл на соответствующей базе и циклический предел упругости в условиях ползучести Sт), представляется недостаточным и его желательно дополнять расчетом стабилизированного цикла [71] и деформаций ползучести, накапливаемых в каждом таком цикле. Применительно к переменным режимам аварийного типа Например, пуск из холодного состояния с последующим мгновенным или просто очень быстрым набором перегрузочной мощности), в процессе которых могут возникать относительно большие пластические деформации (и, может быть, ползучесть), но зато известно, что число таких циклов нагружения за весь срок службы двигателя невелико (например, несколько десятков) описанный выше подход уже не является целесообразным. Для оценки запасов прочности применительно к таким режимам (определяемых как отношение числа циклов до разрушения или появления макроскопической трещины к фактическому числу циклов) необходим расчет, как минимум, параметров стабилизированного цикла или полный расчет кинетики нагружения - цикл за циклом, а также знание соответствующих критериев разрушения, учитывающих накопление повреждений от необратимых деформаций любого типа. аяя  [c.483]


Наиболее удобным и практичным, как отмечалось в разделе 3.2, для решения данного класса задач является метод линий скольжения (метод характеристик) Однако использование данного метода офаничивалось решением задач в плоской (плоская деформация) и осесимметричной постановке.  [c.112]

Температурные напряжения в длинном круговом цилиндре. Рассмотрим стационарное тепловое состояние цилиндра с осесимметричным распределением температуры Т, не зависящим от координаты х = г воспользуемся полярными цилиндрическими координатами г, 0, 2, совмещая ось г с осью цилиндра. Предположим вначале, что торцы цилиндрической трубы с внутренним радиусом и наружным радиусом закреплены таким образом, что е = О, т. е. рассматриваем задачу плоской деформации. В этом случае отличныын от нуля будут три компоненты тензора напряжений Огт, О00 и зависящие только от координаты г.  [c.283]

В последние годы для анализа напрнжений и деформаций в атомных реакторах интенсивно развиваются вычислительные методы с использованием ЭВМ [4, 7, 11 и др.]. Это в первую очередь относится к матричному методу теории пластин и оболочек, методу конечных элементов (МКЭ), методу конечных разностей (МКР). Первый из указанных методов позволяет достаточно точно и быстро рассматривать корпусные осесимметричные конструкции (зоны фланцев, днищ, крышек, нажимных колец) с широкой вариацией условий механического и теплового нагружения и выходом в неупругую область деформаций. Метод конечных разностей использовался для решения контактных задач в области главного разъема корпусов ВВЭР. Наибольшее распространение в инженерной практике в СССР и за рубежом получает метод конечных элементов. Этот метод является достаточно универсальным как для зон с относительно невысокой неоднородностью термомеханических напряжений, так и для зон с высокой концентрацией напряжений (в том числе щелевые сварные швы и дефекты типа трещин). В методе конечных элементов получает отражение одновременное решение тепловой задачи и задачи о напряженно-деформированном состоянии. Наиболее эффективно применение МКЭ для плоского и осесимметричного случая, когда в расчет может быть введена неоднородность механических свойств и стадия неупругого деформирования. Решение трехмерных задач методом конечных элементов сводится в основном к анализу пространственных относительно тонкостенных конструкций, а также к рассмотрению объемных напряженных состояний в ограниченных по размерам зонах (например, зона присоединения толстостенного патрубка к толстостенному корпусу).  [c.42]

Обычно в принятых расчетных методиках корпусные детали турбин рассматриваются как составные осесимметричные оболочки переменной толщины, находящиеся в температурном поле, меняющемся вдоль оси и по радиусу оболочки. С применением таких расчетных методов был проведен анализ температурных напряжений в корпусах стопорных и регулирующих клапанов, а также ЦВД и ЦСД турбин типа К-200-130 [2]. Напряжения определялись по температурным полям, полученным термометриро-ванием корпусов при эксплуатации турбины. Полученные результаты дали общую картину термонапряженного состояния этих корпусов. Они показали, что максимальные напряжения в корпусе стопорного клапана имеют место в подфланцевой зоне, а в корпусах регулирующих клапанов — в месте их приварки к цилиндру и что наиболее термонапряженной зоной корпуса ЦВД является внутренняя поверхность стенки в зоне регулирующей ступени. Однако отсутствие учета влияния фланцев и других особенностей конструкции в этих расчетах приводит к тому, что полученные результаты не всегда, даже качественно, могут характеризовать термонапряженное состояние корпусов. В связи с этим предлагаются упрощенные методики учета влияния фланцев, в частности основанные на уравнениях для напряженного состояния при плоской деформации влияние фланца горизонтального разъема ЦВД часто оценивают по теории стержней. Для оценки кольцевых напряжений решается плоская задача при форме контура, соответствующей форме поперечного сечения. Йри этом рассматри-  [c.55]

Развитие теории прессования имеет большое значение в повышении уровня этого пресса и, кроме того, схема прессования в некоторых случаях подобна схеме прессования при штамповке в закрытых штампах. В работах В. В, Соколовского, Р. И. Хилла, Л. А. Шофмана процесс прессования рассматривался с использованием метода характеристик Губкин С. И., Перлин И. Л., Сторожев М. В. и другие ученые также подвергали теоретическому анализу различные случаи прессования. Для прямого и обратного прессования осесимметричных изделий в условиях плоской деформации, бокового прессования, прессования через многоканальные матрицы и других случаев найдены зависимости для определения удельных давлений течения, усилий, контактных напряжений и выбора оптимальных условий деформирования. Разработаны также методы расчета параметров оборудования и инструмента. Внедрение в промышленность новых видов прессования, в частности прессования профилей переменного сечения, а также прессования высокопрочных материалов, ставит перед теорией новые задачи.  [c.233]


Смотреть страницы где упоминается термин Плоская задача и осесимметричная деформация Плоская деформация : [c.190]    [c.192]    [c.194]    [c.198]    [c.202]    [c.204]    [c.206]    [c.208]    [c.210]    [c.214]    [c.216]    [c.218]    [c.220]    [c.226]    [c.230]    [c.232]    [c.234]    [c.120]    [c.19]    [c.113]   
Смотреть главы в:

Курс теории упругости Изд2  -> Плоская задача и осесимметричная деформация Плоская деформация



ПОИСК



Задача Задачи осесимметричные

Осесимметричная деформация

Осесимметричная задача

ПЛОСКИЕ И ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ

Плоская деформация

Плоская задача



© 2025 Mash-xxl.info Реклама на сайте