Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи термоупругости в напряжениях

При решении задач термоупругости в качестве основных неизвестных удобно принимать перемещения или напряжения. В соответствии с этим различают, как и в изотермической теории упругости, постановку задачи термоупругости в перемещениях и постановку задачи термоупругости в напряжениях.  [c.406]

Постановка задачи термоупругости в напряжениях. Рассмотрим упругое тело, свободное от закреплений и механических воздействий. Допустим, что напряженно-деформированное состояние тела обусловлено неравномерным температурным полем Т. Требуется найти напряжения Gy, Ту , т х-  [c.408]


При решении отдельных задач термоупругости удобно принимать в качестве основных неизвестных компоненты вектора перемещения и, или компоненты тензора напряжения В соответствии с этим различают постановку задачи термоупругости в перемещениях ( 2.2), при которой раньше всех других неизвестных находятся неизвестные Н , и постановку задачи термоупругости в напряжениях ( 2.3), когда начинают решение задачи с определения неизвестных сц.  [c.36]

Постановка задачи термоупругости в напряжениях  [c.39]

В постановке задачи термоупругости в напряжениях решение сводится к нахождению шести функций о, , удовлетворяющих трем уравнениям равновесия (2.1.1), шести уравнениям совместности деформаций в напряжениях (2.3.13) и трем граничным условиям (2.1.3).  [c.42]

При решении задач термоупругости в качестве основных неизвестных удобно принимать компоненты вектора перемещения или компоненты тензора напряжения В соответствии с этим различают, как и в изотермической теории упругости, постановку задачи термоупругости в перемещениях, при которой раньше всех других неизвестных находятся неизвестные и постановку задачи термоупругости в напряжениях, когда решение задачи начинается с определения неизвестных Во всех случаях, если это особо не оговаривается, упругие и термические коэффициенты предполагаются постоянными.  [c.37]

Постановка задачи термоупругости в напряжениях ( 2.3) предусматривает кроме случая односвязной также и случай многосвязной области при этом устанавливаются условия однозначности для перемещений и углов поворота.  [c.38]

Рассмотрим сначала постановку задачи термоупругости в напряжениях для односвязного тела.  [c.40]

В статических задачах термоупругости температурное поле является стационарным. Задачи, в которых не учитывают эффект связанности температурного поля деформаций, а также силы инерции, обусловленные нестационарным температурным полем, называют квазистатическими. В этих задачах тепловые напряжения в упругом теле в рассматриваемый момент времени определяются при известном температурном поле (время здесь является параметром). При решении задач термоупругости в качестве основных неизвестных принимают компоненты вектора перемещений или тензора напряжений. В соответствии с этим различают постановку задачи термоупругости в перемещениях или в напряжениях. Во всех случаях, если это особо не оговаривается, упругие и термические коэффициенты предполагают постоянными.  [c.91]


Постановка задачи термоупругости в перемещениях. Пусть напряженно-деформированное состояние в трехмерном упругом теле, свободном от закреплений и внешних механических воздействий (объемные силы также не учитываются), обусловлено неравномерным его нагревом или охлаждением. Будем считать, что соответствующая задача теплопроводности решена ( 19.1), и для тела известно температурное поле Т. Требуется найти перемещения и, v я w.  [c.406]

Не останавливаясь больше на этом вопросе, перейдем к постановке плоской задачи термоупругости в напряжениях.  [c.85]

Для постановки плоской задачи термоупругости в напряжениях в случае многосвязных тел необходимы дополнительные уравнения, определяющие однозначность перемещений ( 4.2). В многосвязных телах, находящихся в стационарном плоском температурном поле, в связи с неоднозначностью перемещений напряжения в плоскости хОу, вообще говоря, не равны нулю.  [c.88]

Постановка плоской задачи термоупругости в напряжениях для многосвязных тел  [c.89]

В случае многосвязного тела перемещения могут стать многозначными функциями. Поэтому постановка плоской задачи термоупругости в напряжениях, данная в 4.1 для односвязной  [c.89]

Таким образом, постановку плоской задачи термоупругости в напряжениях можно резюмировать следующим образом.  [c.93]

Тепловые напряжения о<0) при осесимметричном температурном поле (4.4.18) можно было бы определить с помощью непосредственной подстановки в формулы (4.3.5) вместо Т—То выражения (4.4.18) для функции 7 ° (/ ). В целях иллюстрации метода приводим решение для тепловых напряжений о< 01, используя постановку плоской задачи термоупругости в напряжениях.  [c.102]

В случае многосвязного тела угол поворота определенный по формуле (4.4.1), и перемещения и Цу могут быть неоднозначными. Поэтому постановка плоской задачи термоупругости в напряжениях, рассмотренная в 4.2 для односвязной области, в случае многосвязной области должна быть дополнена тремя условиями однозначности одним для угла поворота и двумя для переме-  [c.104]

Задача термоупругости в квазистатической постановке, когда не учитываются инерционные члены в уравнениях движения и связывающий член в уравнении теплопроводности, имеет наибольшее практическое значение при обычных условиях теплообмена динамические эффекты, обусловленные нестационарным нагревом, и тепловые потоки, образующиеся вследствие деформации, настолько невелики, что соответствующие им члены в уравнениях могут быть отброшены, и система уравнений распадается на обычное уравнение нестационарной теплопроводности и уравнения, описывающие задачу о термоупругих напряжениях при заданном температурном поле.  [c.7]

Потеря устойчивости упругой пластины может быть вызвана температурными напряжениями. Задачу термоупругой устойчивости рассмотрим в следующей постановке. Тонкая пластина нагревается равномерно по всей толщине f = 1 х, у)-, механические свойства материала пластины считаем не зависящими от температуры. До потери устойчивости удлинения в срединной плоскости связаны с начальными усилиями и температурой соотношениями упругости  [c.200]

Постановка задачи. Обеспечение надежной работы программных комплексов для современных ЭВМ — одна из сложнейших научно-технических задач. Важной составной частью этой проблемы является разработка эффективных тестов. Актуальна также проблема влияния топологии сетки на точность результатов. Решение этой проблемы требует использования удобных для реализации, эффективных и точных решений. Число известных точных аналитических решений трехмерных краевых задач нестационарной теплопроводности и термоупругости невелико. При этом в большинстве случаев способ их представления (в рядах или в интегральной форме) вызывает затруднения при использовании в инженерной практике. Приведенные в параграфе формулы удобны для практического использования. С их помощью при заданных краевых условиях можно найти точное решение задачи при сложных законах изменения трехмерного поля температуры, моделирующего поля температур в роторах и корпусах турбин, в том числе в зонах конструкционной концентрации напряжений.  [c.69]


Поскольку в процессе термообработки в элементах конструкций могут возникать значительные температурные напряжения, необходимо уметь выбрать соответствующие оптимальные режимы термообработки, которые обеспечивали бы сравнительно низкий уровень температурных напряжений. Такая задача поставлена и решена на базе классической теории оболочек в работе [121. В качестве критерия выделения оптимальных температурных полей, обеспечивающих сравнительно низкий уровень температурных напряжений, в [12] принято условие минимума функционала упругой энергии оболочки. Ниже в такой постановке решена экстремальная задача термоупругости для бесконечной трансверсально-изотропной цилиндрической оболочки.  [c.213]

В книге приводится краткое изложение теории термоупругости. В ней содержатся основные положения н методы термоупругости, необходимые для исследования тепловых напряжений в элементах конструкций при стационарных и нестационарных температурных полях приводятся решения ряда задач о тепловых напряжениях в дисках, пластинах, оболочках и телах вращения в статической и квазистатической постановках рассматриваются динамические задачи термоупругости, а также термоупругие эффекты, вызванные процессами деформирования.  [c.2]

Рассмотрим в квазистатической постановке две типичные плоские задачи термоупругости, возникающие при плоском температурном поле Т х,у,1) о плоской деформации и плоском напряженном состоянии.  [c.82]

Существует аналогия между плоской задачей термоупругости для многосвязных тел при стационарном температурном поле и плоской задачей изотермической теории упругости с дислокациями, которая установлена Н. И. Мусхелишвили в 1916 г. [33]. Действительно, при наличии дислокаций и отсутствии поверхностных сил (/х=/л> = 0) постановка задачи изотермической теории упругости сводится к нахождению функции напряжений, удовлетворяющей дифференциальному уравнению  [c.94]

В настоящей главе рассматриваются в квазистатической постановке две типичные плоские задачи термоупругости о плоской деформации и о плоском напряженном состоянии. Плоская деформация возникает в длинном цилиндрическом или призматическом теле (рис. 17), а плоское напряженное состояние приближенно реализуется в тонкой пластине (рис. 18). Математические формулировки этих двух задач сходны. —Они обсуждаются в 4.2.  [c.92]

Приведенный здесь способ решения осесимметричной плоской задачи термоупругости, основанный на применении уравнения четвертого порядка (4.7.7) для функции напряжений, имеет лишь методическое значение тепловые напряжения и 00° могут быть непосредственно получены из формул (4.6.2) при постановке в них  [c.125]

Для многих отраслей техники характерны конструкции, работающие в условиях интенсивных тепловых и силовых воздействий. Работоспособность и долговечность таких теплонапряженных конструкций зависят от взаимосвязанных факторов, которые являются предметом изучения различных разделов механики теорий теплопроводности, термоупругости, пластичности и ползучести, механики разрушения и др. Однако особенности работы теплонапряженных конструкций требуют, как правило, совместного рассмотрения упомянутых разделов механики и их изложения с единых позиций. Такой путь позволяет инженеру-расчетчику ориентироваться во взаимосвязанных вопросах и квалифицированно подойти к решению достаточно сложных прикладных задач термопрочности. К таким вопросам прежде всего следует отнести постановку, методы и алгоритмы решения задач по определению температурного и напряженно-деформированного состояний элементов конструкций с учетом неупругого поведения материалов при переменных режимах тепловых й силовых воздействий с целью оценки работоспособности и долговечности теплонапряженных конструкций.  [c.5]

В четвертой главе излагается общая постановка плоской задачи термоупругости в перемещениях и напряжениях при этом особое внимание уделяется формулировке плоской задачи термоупругости в напряжениях для многосвязной области в связи с изучением термонапряженности плоских многосвязных тел. Здесь дается подробный вывод условий однозначности для перемещений и углов поворота, выясняется связь их неоднозначности с дислокационными напряжениями и приводится аналогия между плоской задачей термоупругости для многосвязных тел при стационарном температурном поле и соответствующей плоской задачей изотермической теории упругости с дислокациями, установленная Н. И. Мусхелишвили в 1916 г.  [c.8]

Постановка плоской задачи термоупругости в напряжениях для многосвязного тела, условия однозначности перемещений иднслока-  [c.92]

В задаче термоупругости определяются напряжения и деформации, возникающие вследствие неоднородного распределения темп-ры в теле. При матам, постановке этой задачи в правую часть первых трёх ур-ний (1) добавляется член — (ЗХ-)-2 а)аГ, где а—коэф. линейного температурного расширения, T(xi, Х2, J 3)—заданное поле темп-ры. Аналогичным образом строится теория электромагнито-упругости и упругости тел, подвергаемых облучению.  [c.235]

Во второй главе рассматриваются основные уравнения задачи термоупругости в квазистатической постановке, когда не учитываются связывающий член в уравнении теплопроводности и инерционные члены в уравнениях равновесия. Рассмотрение этого вопроса в специальной главе оправдывается тем, что квазистатическая задача термоупругости имеет наибольшее практическое значение в обычных условиях теплообмена тепловые потоки, образующиеся вследствие деформации, и динамические эффекты, обусловленные нестационарным нагревом, настолько невелики, что соответствующие члены в уравнениях могут быть отброшены и система уравнений распадается на обычное уравнение нестационарной теплопроводности и уравнения, описывающие статическую задачу о термоупругих напряжениях при заданном температурном поле, вызванном внешними источниками тепла. Здесь при изложении постановки квазистатической задачи термоупругости в перемещениях представление общего решения выбрано в форме, полученной П. Ф. Папкови-чем в 1932—1937 гг. В этой форме решение однородного уравнения для вектора перемещения содержит произвольные гармонические вектор и скаляр, а частное решение соответствующего неоднородного уравнения, отвечающего заданному температурному полю, определяется через скалярную функцию, получившую название термоупругого потенциала перемещений, которая удовлетворяет уравнению Пуассона.  [c.7]


Содержание книги отвечает следующему плану сначала рассматриваются термодинамические основы термоупругости и дается постановка задачи термоупругости для самого общего случая, когда приращение температуры не является малой величиной по сравнению с начальной температурой, а нестационарные процессы деформирования сопровождаются существенными динамическими эффектами и взаимодействием между полями деформации и температуры затем приводятся основные уравнения квазистатической задачи термоупругости и сообщаются основные сведения по теории стационарной и нестационарной теплопроводности, необходимые для исследования температурных полей и соответствующих им тепловых напряжений в квазистатической и динамической постановках далее разбираются основные классы квазистатических задач термоупругости (плоская задача термоупругостн, задача термоупругостн круглых пластин и оболочек вращения, осесимметричная пространственная задача термоупругости) в последних двух главах рассматриваются динамические и связанные задачи термоупругости.  [c.3]

При термическом воздействии изменяются механические свойства материала и возникают температурные деформации. Таким образом, при решении динамических задач термоупругости и термовязкоупрутости важное значение приобретает учет термомеханической связанности (термомеханического сопряжения), отражающей взаимное влияние механических полей (т.е. полей напряжений, перемещений и деформаций) и температурного поля. Задачи, в постановке которых учитывается взаимное влияние указанных полей, называют связанными.  [c.187]

Для анализа работоспособности теплонапряженных элементов конструкций, помимо данных о их температурном состоянии, необходимо располагать информацией о напряженно-деформированном состоянии, найденном с учетом реальных механических свойств консгрукцион-ных материалов. Получение этой информации в общем случае связано с постановкой и решением соответствующих задач термоупругости, термо-пластичности или термоползучести в зависимое-  [c.210]

Постановка задачи. Представим себе неограниченное однородное и изотропное упругое тело с осесимметричной полостью в виде полубесконечнога цилиндра с закругленным основанием (рис. 191). На дно полости направлена высокотемпературная струя газа, исходящая из некоторого резервуара с соплом А. Под действием разогрева в теле возникают термоупругие напряжения, подчиняющиеся закону Дюамеля — Неймана. Внешние нагрузки считаем пренебрежимо малыми сравнительно с характерными температурными напряжениями. При достаточно больших внутренних напряжениях происходит разрушение приповерхностной области тела, и частицы разрушенного материала уносятся струей р (, jgj газа. Разрушение тела считается хрупким оплавление отсутствует. Эти условия налагают некоторые ограничения на температурный режим чисто хрупкого разрушения.  [c.481]

Э. И. Григолюка, Я. С. Подстригача, Я. И. Бурака [25] излагается математическая постановка и методика решения возникающих в связи с нагревом задач оптимизации для пластин и оболочек с учетом их неоднородности. В книгах [123, 124] изложены основы теории и методы решения задач термоупругости для тел с различными упругими включениями. Большое внимание уделено изучению температурных полей и напряжений в телах с оболо-чечными, пластинчатыми, стержневыми, сферическими, цилиндрическими, круговыми включениями, для которых область, занятую включением, удается исключить из рассмотрения таким образом, что его влияние характеризуется усложненными граничными уело-  [c.6]

Постановка плоской задачи термоупругости имеет особенности по сравнению с плоской задачей изотермической теории упругости, связанные с характером температурного поля. Плоское дес рмиро-ванное состояние вызывается двумерным (плоским) температурным полем. Плоское напряженное состояние в рамках пространственной теории упругости может существовать при пространственном температурном поле, удовлетворяющем определенному условию. При произвольном плоском температурном поле в тонкой пластине возникает напряженное состояние, мало отличающееся от плоского на пряженного состояния.  [c.8]

Анализ НДС в упругой постановке показывает, что применение теории оболочек переменной жесткости эффективно при решении термоупругих задач. Однако эта теория не учитьшает концентрацию напряжений. Для расчета параметров НДС в локальных зонах конструктивных элементов следует применять МКЭ.  [c.189]

Настоящая монография посвящена исследованию распределения напряжений около трещин в двумерных телах. На основе метода сингулярных интегральных уравнений рассмотрены задачи теории упругости и термоупругости, а также задачи об изгибе пластин и пологих оболочек для однородных изотропных областей, ослабленных криволинейными трещинами. В предыдущей монографии автора Распределение напрялсений около трещин в пластинах и оболочках ( Наукова думка , 1976 соавторы В. В. Панасюк и А. П. Дацышин) предложен метод решения таких задач для системы произвольно ориентированных прямолинейных трещин. Здесь этот метод обобщен на случай гладких н кусочно-гладких криволинейных разрезов-трещин, что дало возможность единым подходом рассмотреть в общей постановке основные граничные задачи для конечных или бесконечных многосвязных областей, ослабленных отвер-стиями н трещинами произвольной формы. По каждому классу задач приведены примеры их решеии51 предложен-  [c.3]

В самой общей постановке вариационная задача сопряженной термоупругости для неоднородного и анизотропного тела сформулирована в работе [17а]. Начальные условия заданы для перемещений, скоростей перемещений и температуры, граничные условия носят смешанный характер и заданы на различных частях поверхности тела для перемещений, напряжений, температуры и теплового потока. При помощи операции свертки со специальными функциями в уравнениях сопряженной термоупру-гости исключены производные по времени, и вариационные принципы сформулированы для произвольного момента времени. Сформулированы общий вариационный принцип, эквивалентный  [c.240]


Смотреть страницы где упоминается термин Постановка задачи термоупругости в напряжениях : [c.79]    [c.226]    [c.197]   
Смотреть главы в:

Введение в термоупрогость  -> Постановка задачи термоупругости в напряжениях

Основы термоупругости  -> Постановка задачи термоупругости в напряжениях



ПОИСК



656 —• Постановка задачи

Задача в напряжениях

Задачи термоупругости

К постановке зг ачи

Напряжения термоупругие

Постановка задачи термоупругости

Постановка плоской задачи термоупругости в напряжениях для многосвязного тела

Постановка плоской задачи термоупругости в напряжениях для многосвязных тел

Термоупругие задачи

Термоупругость

Типовые расчетные схемы и постановка инженерных задач по определению термоупругих напряжений Зарубин)



© 2025 Mash-xxl.info Реклама на сайте