Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее уравнение динамики в обобщенных координатах Лагранжа

Общее уравнение динамики в обобщенных координатах Лагранжа  [c.123]

Общее уравнение динамики в обобщенных координатах. Уравнения Лагранжа второго рода. Общее уравнение динамики системы материальных точек  [c.471]

Для анализа динамического проскальзывания используют метод составления общего уравнения динамики в обобщенных координатах в виде уравнения Лагранжа второго рода  [c.59]


После рассмотрения дифференциальных уравнений движения и двух основных задач динамики несвободный материальной системы изучается метод Лагранжа. Вводится понятие об обобщенных координатах, обобщенных скоростях и обобщенных силах. Выводятся общее уравнение статики в обобщенных координатах и уравнения равновесия несвободной материальной системы. Уравнения движения в обобщенных координатах вытекают из уравнений равновесия и принципа Даламбера-Для этого достаточно к обобщенной активной силе добавить обобщенную силу инерции. После элементарных преобразований получается  [c.70]

Применение основного закона динамики ведет в данной задаче быстрее и проще к составлению дифференциальных уравнений движения, однако первый путь — использование уравнений Лагранжа в обобщенных координатах является более общим методом.  [c.602]

Общее уравнение динамики, выражающее объединенный принцип Даламбера — Лагранжа, позволяет вывести уравнения движения механических систем в обобщенных координатах или так называемые уравнения Лагранжа второго рода.  [c.361]

Обобщение интеграла живых сил. Исходя из уравнений движения Лагранжа, возможно установить интеграл живых сил в форме более общей, чем та, с которой мы встретились при изложении общих теорем динамики. Из уравнений (5.15), наложенных на рассматриваемую механическую систему голономных связей в голономных координатах Лагранжа, после дифференцирования имеем  [c.168]

Применение уравнений (16.10) при исследовании динамики механизмов с переменными массами звеньев крайне затруднительно вследствие сложности выражения (16.14) для дополнительного члена Di. Кроме того, при вычислении кинетической энергии Т надо иметь ввиду, что массы звеньев и отдельных материальных частиц зависят в общем случае от времени, обобщенных координат qi и обобщенных скоростей qt, что усложняет вычисление частных и полных производных. Поэтому для задач теории механизмов и машин более удобным является другой вид уравнений Лагранжа второго рода, который получается на основании принципа затвердевания.  [c.302]


Уравнения Лагранжа. Чтобы найти уравнения движения механической системы с геометрическими связями в обобщенных координатах, обратимся к общему уравнению динамики (ИЗ), которое дает  [c.461]

Уравнение (28.2) называют также общим уравнением динамики голономных систем. Действительно, если уравнение (28.2) принять в качестве основной и единственной аксиомы, то простыми преобразованиями из него можно получить любые уравнения движения несвободной механической системы, т. е. как уравнения Лагранжа первого рода (26.11), так и уравнения Лагранжа в обобщенных координатах.  [c.160]

Уравнения динамики были записаны в общем виде Лагранжем с помощью системы обобщенных координат и скоростей.  [c.705]

Лагранж полностью отказался от геометрической трактовки в механике- Все учение о равновесии и движении он свел к некоторым общим уравнениям. В основу статики он положил принцип возможных перемещений. В основу динамики он положил сочетание принципа возможных перемещений с принципом Даламбера (методом кинетостатики) и ввел обобщенные силы и обобщенные координаты.  [c.487]

Вместо сочетания некоторых общих теорем и уравнений динамики, выбор которых представляет значительные трудности, применение уравнений Лагранжа является обшим приемом, который приводит к составлению дифференциальных уравнений движения. Удачный выбор обобщенных координат обеспечивает относительную простоту составления этих уравнений. Удобно и то, что в составленные дифференциальные уравнения движения не входят реакции идеальных связей, определение которых обычно связано с большими трудностями (реакции связей при движении системы являются функциями от времени, положения, скоростей и ускорений точек системы)..  [c.581]

Здесь j — знак суммирования, а для возможных перемещений, т. е. бесконечно малых мгновенных изменений координат, согласных с уравнениями связи при фиксированном значении времени, применен знак б. Лагранж показывает, что его общая формула динамики дает столько дифференциальных уравнений движения, сколько требуется по условиям любой задачи. Он строит эти уравнения для систем со связями по методу неопределенных коэффициентов и получает аналогичные статическим уравнения Лагранжа первого рода , в которые явно входят реакции связей. Он дает и вторую открытую им форму уравнений движения — уравнения Лагранжа второго рода , вводя обобщенные координаты и скорости (это одно из его самых замечательных открытий в механике). Посредством анализа общей формулы (Ь), с использованием многих положений, установленных в статике, выводятся общие свойства движения . Это не что иное, как доказательство общих теорем динамики системы теоремы о движении центра инерция, теоремы моментов , теоремы живых сил .  [c.156]

При изучении общих теорем динамики рассматривались лишь частные случаи систем, обладающих определенным классом возможных перемещений (поступательное, вращательное и т. д.). Для ряда механических систем эти условия общих теорем не выполняются, и последние не могут быть применимы без введения реакций связен. Метод Лагранжа позволяет изучать движение в самом общем случае. Естественно, что если за обобщенные координаты будут взяты параметры, соответствующие перемещениям, допускающим применение общих теорем, то уравнения Лагранжа будут совпадать с уравнениями, полученными из общих теорем.  [c.344]

Данное пособие состоит из двух глав и приложения. В первой главе изложены методики, приведены примеры и программы получения с помощью системы аналитических вычислений REDU E, а также численных методов основных уравнений аналитической динамики (уравнений Лагранжа, Гамильтона, Рауса и др.). Рассмотрена задача вывода уравнений Эйлера - Лагранжа с использованием общих теорем динамики, а также уравнений относительного движения в обобщенных координатах.  [c.3]


Методы статики несвободной системы, изложенные в гл. XXVII, обобщаются и на динамику. Подобно тому как использование уравнения принципа возможных перемещений — общего уравнения статики — привело к различным формам уравнений равновесия (в декартовых координатах, в обобщенных зависимых и независимых координатах), точно так же из общего уравнения динамики выводятся аналогичные формы дифференциальных уравнений движения несвободной системы. Уравнения эти получили наименование уравнений Лагранжа, так как были впервые опубликованы в Аналитической механике Лагранжа.  [c.385]

Наиболее общим приемом составления дифференциальных уравнений движения материальной системы, подчиненной голономным связям, является применение уравнений Лагранжа. При наличии идеальных связей в эти уравнения не входят реакции связей. Если на материальную систему наложены голономные связи, то число уравнений Лагранжа равно числу степеней свободы. Применение этих уравнений особенно целесообразно при рассмотрении систем с несколькими степенями свободы. Так, в случае системы с двумя степенями свободы надо составить два дифференциальных уравнения движения. Если решать задачу, минуя уравнения Лагранжа, то необходимо из многих общих теорем и иных уравнений динамики найти два уравнения, применение которых наиболее целесообразно. Удачно выбрать уравнения и общие теоремы можно лишь на основе значительных навыков в решении задач или путем ряда неудачных проб и ошибок. Вместе с тем применение уравнений Лагранжа дает возможность быстро и безошибочно получить необходимые дифференциальные уравнения движения. Вообще говоря, при отсутствии ясного плана решения зад7чи лучше всего использовать уравнения Лагранжа. При этом существенную роль играет удачный выбор обобщенных координат.  [c.549]

Дальнейшее исследование свойств подобных дифференциальных форм высших порядков и уравнений движения, выражающихся через них, бесспорно может привести к новым интересным фактам. Лагранж, Эйлер и все другие классики были бы весьма удивлены новым видом уравнений динамики. Но уже и сейчас можно утверждать, что новая форма уравнений динамики является основой дальнейшего развития механики неголономных систем самого общего вида. Если на базе обычных уравнений Лагранжа удается выводить все существующие типы уравнений движения неголономных механических систем только с неголономными связями первого. порядка и 1при этом линейными относительно обобщенных скоростей, то уравнения новой формы могут быть непосредственно применены и для вывода из них уравнений движения с неголономными связями любого вида, т. е. любого дифференциального порядка и любой структуры в смысле линейности или нелинейности уравнений связей относительно производных от обобщенных координат. Уравнения движения для систем с неголономными связями второго порядка были выведены в середине шестидесятых годов тем же И. Ценовым. Уравнения движения с множителями Лагранжа при нелинейных неголономных связях перво-  [c.11]


Смотреть страницы где упоминается термин Общее уравнение динамики в обобщенных координатах Лагранжа : [c.302]    [c.43]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Общее уравнение динамики в обобщенных координатах Лагранжа



ПОИСК



70 - Уравнение динамики

Динамика лагранжева

Динамика общее уравнение

Координаты Лагранжа

Координаты лагранжевы

Координаты обобщенные

Координаты обобщенные (лагранжевы)

Лагранжа динамики общее

Лагранжа общие уравнения

Обобщенные координаты. Уравнения Лагранжа

Обобщенные уравнения

Общая динамика

Общее уравнение динамики в обобщенных координатах

Общее уравнение динамики в обобщенных координатах. Уравнения Лагранжа второго рода

Общие уравнения

Уравнение динамики общее

Уравнения Лагранжа

Уравнения МСС в лагранжевых координатах

Уравнения в координатах



© 2025 Mash-xxl.info Реклама на сайте