Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка давлением пластических материалов

Обработка давлением пластических материалов  [c.285]

Перечислите основные виды обработки давлением пластических материалов.  [c.291]

При изготовлении тугоплавких металлических сплавов методами порошковой металлургии твердофазные реакции также играют существенную роль. Непосредственное получение сплавов, легированных тугоплавкими металлами (Мо, W, Та, Ti), сопряжено с большими трудностями. Поэтому оказалось целесообразным проведение соответствующих твердофазных реакций. В последнее время приобрели большое значение некоторые высокопрочные материалы, которые состоят из карбидов и окислов в соединении со связующими металлами. К этой группе принадлежат металлокерамические материалы, которые сочетают температурную и коррозионную стойкость керамических материалов и важные при обработке давлением пластические свойства металлов.  [c.433]


На величину пластической деформации, которую можно ДОСТИЧЬ без разрушения (предельная деформация), оказывают влияние многие факторы, основные из которых — механические свойства металла (сплава), температурно-скоростные условия деформирования и схема напряженного состояния. Последний фактор оказывает большое влияние на значение предельной деформации. Наибольшая предельная деформация достигается при отсутствии растягивающих напряжений и увеличении сжимающих. В этих условиях (схема неравномерного всестороннего сжатия) даже хрупкие материалы типа мрамора могут получать пластические деформации. Схемы напряженного состояния в различных процессах и операциях обработки давлением различны, вследствие чего для каждой операции, металла и температурно-скоростных условий существуют свои определенные предельные деформации.  [c.54]

Основные способы упрочнения материалов следующие горячая обработка давлением, легирование, упрочняющая термическая и химико-термическая обработки, обработка методами холодной пластической деформации.  [c.164]

Снятие фаски <В 23 (D 19/08 с концевых кромок зубьев шестерен F 19/10 с торцов труб и прутков В 5/16 с листового материала В 27 G 5/00 шлифованием В 24 В 9/00) Собачки [в лебедках В 66 D 3/10, 5/00 F 16 в механизмах вообще D 41/(12-16, 30), Н(19, 21, 29)/00 стопорные, использование для фиксации винтов, болтов или гаек В 39/32) в механических счетчиках G 06 М 1 /00 ] Содовые парогенераторы F 22 В 1/20 Соединение см. также скрепление, соединения соединительные F 16 [валов жесткое D 1/00 канатов и тросов G 11/00 клиновых ремней G 7/00-7/06 поршней со штоками или шатунами J 1/10-1/24 склеиванием или спеканием В 11/00, 47/00, С 09 J 5/00 труб плоскими поверхностями В 9/00)) ] деталей (наплавкой В 22 D 19/04 склеиванием или спеканием F 16 В 11/00, 47/00, С 09 J 5/00) концов нитевидных материалов в намоточных машинах В 65 Н 67/08 листовых элементов и плит F 16 В 5/00-5/12 металлических изделий (взрывом В 23 К 20/08 ковкой или штамповкой В 21 К 25/00 литьем В 22 D 19/00 пайкой или сваркой В 23 К В 23 К (прокаткой 20/04 путем плакирования 20/00 холодной сваркой под давлением 20/00) спеканием В 22 F 7/00-7/08 способами обработки давлением В 21 D 39/(00-20)) ( пластических материалов С 65/(00-82) резины с другими материалами С 65/00, D 9/00 труб из пластических материалов L 31 24) В 29 проволоки с проволокой и другими металлическими деталями В 21 F 7/00, 15/(00-10) стекла <с металлом С 27/02 со стеклом (С 27/(06-12) сваркой В 23/(20-24)) С 03  [c.179]


Важной проблемой с точки зрения практического применения сплавов для деталей, имеющих различную форму, является обрабатываемость их давлением. Сплавы на основе Си являются почти такими же хрупкими, как интерметаллические соединения. Обработка этих сплавов давлением при комнатных температурах чрезвычайно трудна. Сплавы Т1 — N1, несмотря на то что они являются интерметаллическим соединением, имеют хорошую обрабатываемость давлением возможна холодная деформация этих сплавов путем волочения или прокатки. Технология обработки этих сплавов относится к производственным секретам фирм-изготовите-лей, поэтому по этой проблеме каких-либо данных практически не опубликовано. Тем не менее имеются сообщения, свидетельствующие о сложном влиянии обработки давлением на свойства сплавов. Так, например, материалы, полученные холодной ковкой, при нагреве удлиняются, а материалы, полученные холодным волочением, сжимаются. По-видимому, это обусловлено мартенситным превращением, однако вследствие такого поведения после термообработки возникают размерные погрешности, поэтому этой проблеме необходимо уделять особое внимание при обработке точных деталей. Сплавы с эффектом памяти формы характеризуются чрезвычайно специфичным деформационным поведением, поэтому проблема их пластической деформации имеет большое практическое и научное значение.  [c.143]

Пластическая деформация связана с разрывом некоторых межатомных связей и образованием новых. Пластичность проявляется в деталях конструкций и сооружений, заготовках при обработке давлением (прокатке, штамповке и др.), в пластах земной коры. Пластичность определяет возможность технологических операций обработки материалов давлением. Учет пластичности позволяет определять запасы прочности, деформируемости и устойчивости, расширяет возможности создания конструкций минимального веса.  [c.80]

Алюминиевые сплавы выбраны в качестве матрицы композиционного материала с борным волокном, благодаря удачному сочетанию свойств. Матрица должна обладать следующими свойствами высокой вязкостью разрушения, приводящей к торможению распространения трещины в материале при разрушении или образовании трещины в волокне, способностью пластически обтекать волокно и связываться с ним, высокой прочностью и коррозионной стойкостью. Для композиционных материалов, предназначенных для работы при высоких температурах, весьма важными являются сопротивление ползучести и стойкость против окисления. Кроме того, матрица должна обладать способностью свариваться и соединяться пайкой, а в некоторых случаях позволять применять к композиционному материалу обработку давлением.  [c.427]

В условиях всестороннего неравномерного растяжения металлы, пластичные в обычных условиях, проявляют склонность к хрупкому разрушению при обработке давлением. Наоборот, в условиях всестороннего неравномерного сжатия даже хрупкие материалы типа мрамора могут пластически деформироваться.  [c.252]

Обработка давлением сплавов с карбидным упрочнением. Сплавы ниобия, упрочненные карбидной фазой, используются в качестве конструкционных материалов. Основную часть полуфабрикатов и изделий из них получают с помощью обработки давлением исходного слитка. Технология обработки давлением ниобия и сплавов на его основе, преимущественно однофазных, освещена в ряде работ и наиболее полно в работах [75—79]. Некоторый анализ условий пластической деформации тугоплавких материалов и в частности сплавов с дисперсными тугоплавкими фазами проведен в работе [80].  [c.196]

Пластическая деформация при обработке давлением и при таких операциях, как растяжение, сжатие или изгиб, а также при упрочнении поверхности (дробеструйной обработкой или обкаткой), изменяет плотность и структуру дефектов кристаллической решетки пластичных фаз металлических материалов и поэтому всегда влияет на их усталостную прочность. В макроскопически неоднородно деформированных материалах наряду с влиянием деформационной структуры необходимо также исследовать зависимость усталостной прочности от остаточных макронапряжений. Остаточные напряжения сжатия, как правило, способствуют дополнительному повышению циклической прочности. Изменение в процессе деформации высоты поверхностных микронеровностей влияет на циклическую прочность [13, 45-48].  [c.232]


Б о б р ы н и н Б. Н., О развитии научно-исследовательских работ в области обработки синтетических полимерных материалов давлением, Пластические массы № 1, 1960.  [c.235]

Без знания физико-химических и механических законов, управляющих явлениями упруго-пластических деформаций и разрушения материалов, не мыслится ни решение проблем создания новых искусственных материалов и, в частности, решение вопросов строения и свойств высокополимерных органических соединений, ни решение современных задач геофизики, геологии, а также науки о прочности сооружений и инженерных конструкций, работающих в особо сложных условиях эксплуатации. Знание физико-химических и механических законов необходимо и при решении задач технологии обработки материалов давлением (пластической обработки) и резанием.  [c.12]

Для иллюстрации изложенного остановимся на рассмотрении особенностей анализа, применяемого в двух основных наиболее крупных классах задач (горячая и холодная обработка давлением), к которым сопротивление материалов пластическому деформированию относит большую часть задач, выдвигаемых производственной практикой. Как проводится анализ процессов горячей обработки металлов давлением  [c.206]

Теория конечных пластических деформаций, как известно, имеет исключительно важное применение в технологии обработки давлением материалов, используемых современной техникой (пластмассы, кера ,шка, дерево, металлы и др.).  [c.426]

Большой интерес для современного машиностроения представляют опоры трения, выполненные из титана. Однако в литературе пока встречается ограниченное число случаев их успешного практического использования. Это объясняется склонностью титановых сплавов к схватыванию и задиру при трении, к пластическому деформированию и наклепу поверхностного слоя, повышенному износу и переносу титана на поверхность трения контртела. Смазывание жидкими смазочными материалами не улучшает антифрикционные свойства пары трения, а твердые смазки плохо удерживаются на поверхности трения из-за низкой адгезии к титану. Для повышения антифрикционных свойств титана применяют упрочнение его поверхности путем насыщения кислородом (оксидирование), азотом (азотирование), нанесения электролитических покрытий (хромирование, никелирование и др.), электролитического сульфидирования и обработки давлением обкатыванием и виброобкатыванием. Наиболее технологичным и эффективным является способ термического оксидирования, состоящий в нагреве в электрических печах с доступом воздуха при температуре 700—800 °С. Результаты упрочнения титана различными способами химико-термической обработки даны в работе [34], а подробная технология термического оксидирования в [83]. Авторы последней работы рекомендуют материалы подшипников с валом из оксидированного титана и допускаемые параметры трения, полученные на машинах трения МИ-1М, СМЦ-2 и Б-4. Наиболее употребительные из этих материалов приведены в табл. 41, откуда видно, что  [c.156]

ЛИЙ различными способами обработки давлением, основанными на пластическом деформировании металла. Материалы с повышенной пластичностью менее чувствительны к концентраторам напряжений и другим факторам охрупчивания. По показателям прочности, пластичности и т. д. производят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.  [c.167]

Способность многих материалов к пластической деформации сопровождается, как правило, повышением сопротивления разрушению, т. е. разруше 1И1о предшествует деформационное упрочнение, что имеет в технике исключительно важное значение. Тйкая способность определяет возможность не только придания изделиям нужной формы, но и дополнительного их упрочнения за счет различных технологических операций обработки давлением. Характерно, что даже обработка резанием без способности материала к неупругим деформациям, как в случае абсолютно хрупких материалов, была бы возможна только в очень ограниченных пределах.  [c.5]

Прессование. Основной операцией процесса изготовления композиционных материалов методом диффузионной сварки под давлением является прессование. Именно в процессе этой операции происходит соединение отдельных элементов предварительных заготовок в компактный материал (формирование изделий). В отличие от прессования как метода обработки давлением металлов и сплавов, заключающегося в выдавливании металла из замкнутой полости через отверстие в матрице и связанного с большими степенями деформации обрабатываемого материала, данный процесс по своему существу ближе к процессу прессования порошковых материалов, применяемому в порошковой металлургии. Прессование заготовок композиционных материалов в большинстве случаев осуществляется в замкнутом объеме (в пресс-формах, состоящих из матрицы и двух пуансов типа пресс-форм, применяемых для получения изделий из металлических порошков) и с незначительной пластической деформацией материала матрицы, необходимой только для заполнения пространства между волокнами упрочнителя и максимального уплотнения самой матрицы. При этом, как и в процессе горячего прессования порошков, наряду с пластической деформацией матрицы, на границе раздела 126  [c.126]

Обработка металлов давлением включает группу TexH0JK)FH4e-ских процессов, таких как прокатка, прессование, волочение, ковка, штамповка, в результате воздействия которых на металлическую заготовку изменяется ее форма в результате пластической деформации. Источником деформирующей силы в процессе обработки металлов давлением является энергия, создаваемая в прокатных и волочильных станах, прессах, молотах и т. д. Деформирующие силы передаются на заготовку инструментом, который обычно является твердым, испытывающим малые упругие деформации при пластической деформации заготовки. Основные факторы, свидетельствующие о персиективности применения процессов обработки давлением для изготовления композиционных материалов, приведены ниже.  [c.144]


Сверхлегкие конструкционные сплавы. Сверхлегкие конструкционные сплавы созданы на основе магния или алюминия посредством легирования их самым легким металлом —литием (Li удельный вес 0,53 Г/см , Тсо.,,идус= 186 °С). Такое легирование не только снижает удельный вес сплава, но и, что самое важное, улучшает пластические свойства (снижается температура, допускающая обработку давлением) и повышает модуль упругости, обеспечивая тем самым большую жесткость конструкций, изготавливаемых из магнйеволитиевых сплавов (МЛС), по сравнению с жесткостью конструкции того же веса из других металлических материалов, включая сталь и тнтан. Удельный вес заключен в пределах 1,3—1,65 Псм , это ниже удельного веса промышленных магниевых  [c.320]

Колеса дисковые, изготовление В 21 Н 1/02 зубчатые [изготовление <В 21 (ковкой К 1/30 прокаткой Н 5/00) из (металлического порошка В 22 F 5/08 пластических материалов В 29 D 15/00) из пластических материалов В 29 L 15 00 для ручных зажимных инструментов В 25 В 7/12 термообработка С 21 D 9/32] изготовление ((ковкой или штамповкой К 1/28-1/42 D 53/26-53/34 (обработкой давлением из металла)) В 21 литьем во вращающихся формах В 22 D 13/04-13/06) измерение (бокового давления G 01 L 5/20 измерительные G 01 3/12 кулачковые в механических цифровых вычислительных машинах G 06 С 16/38 летательных аппаратов В 64 С 25/36 как направляющие устройства в канатных дорогах В 61 В 12/02 для передвижных домкратов В 66 F 5/00-5/04 из пластических материалов В 29 L 31 32 рабочие (гидравлических и пневматических муфт F 16 D 33/20 гидротурбин F 02 В 3/12-3/14) токарные станки для обработки В 23 В 5/28-5/34 транспортных средств [В 60 В (балластные грузы для колес 15/28 дисковые 3/00-3/18) защита от грязи В 62 D 25/16 ж.-д. <В 60 В В 61 (защита от грязи F 19/02 измерение и осмотр К 9/12 предотвращение буксования С 15/00-15/14 регулирование нагрузки на колеса F 5/36) изготовление прокаткой В 21 Н 1/04 шлифование В 24 В 5/46) В 60 (ограждение для них R 19/00-19/50, В 61 F 19/02 очистка S 1/68 повышенной эластичности В 9/00-9/28, В 17/02 со спицами В 1/00-1/14 сферические В 19/14 увеличение силы сцепления с дорогой В 15/00-15/28, 39/00 устройства для монтажа или демонтажа, сборки или разборки В 29/00-31/06) предотвращение схода с рельсов В 61 F 9/00 определение дисбаланса G 01 М 1/28 В 62 (схемы расположения D 61/00-61/12 щитки грязевые для колес в мотоциклах, велосипедах и т.п. J 15/00-15/04] формы для отливки В 22 С 9/28 ходовые для подъемных кранов В 66 С 9/08 шлифование В 24 D цевочные в пишущих машинах B41J 11/28  [c.95]

Литейные [краны подъемные В 66 С 17/06-17/18 машины стереотипные В 41 D 3/12 стержни В 22 С 9/00-9/30 установки (В 22 D 47/00 для обработки пластических материалов В 29 С 39/00, 45/00) формы <В 22 (С 9/00-9/30 комбинированные с формовочными установками D 47/02 материалы для них С 1/00-1/26 покрытие С 23/02) для отливки стереотипов В 41 D 3/00-3/28) ци.шндры для литья под давлением термопластичных материалов В 29 С 45/62 шлаки, технология разделения В 03 В 9/04] Литейный чугун (получение С 1/08 термообработка D 5/00-5/16) С 21 Литники В 22 входные о-гзерстия для подвода расплавленного металла С 9/08 обрезка D 31/00) Литниковые ножи, очистка В 41 В 11/72 Литье В 22 <в вакууме D 18/00-18/08 по выплавляемым моделям С 1/08 под давлением (D 17/00-17/32, 18/00-18/04, 18/08 обработка расплава D 27/09-27/13) в землю, формовка постелей D 3/02 в изложницы С 13/08 металлов (кокильное D 15/04 легкоокисляющееся С 1/06 многослойное D 7/02 н< прерывное D 11/00-11/22 особые способы D 23/00-23/06, F 9/08 художественное D 25/02-25/04 центробежное D 13/00-13/12 труб С13/10)>  [c.106]

Облицовка ( заготовок антифрикционными материалами при литье В 22 D 19/08 В 65 D затворов 39/18 5/56-5/60 эластичной трубчатой 35/14-35/20) тары изделий при механической обработке давлением В 21 D 49/00 В 29 С (изделий 63/00-63/48 труб 49/24-49/26, 63/00) пластическими материалами кузовов ж.-д. транспортных средств В 61 D 17/18 печей F 27 поверхностей для получения декоративного эффекта В 44 С 5/04, 3/12 форм, сердечников или оправок ири формовании керамических изделий В 28 В l/Sb -, Облучение изделий на основе каучука при вулканизации В 29 С 35/08-35/10 использование для обработки воздуха, топлива или горючих смесей в ДВС F 02 М 27/00, 27/06 в химических или физических процессах В 01 J 19/08) Обнаружение объектов под водой В 63 С 7/26, 11/48-11/50 ошибок в цифровых ЭВМ G 06 F 11/00-11/34 утечек в трубопроводах F 17 D 5/02-5/06) Обогрев водителей, устройства для этой цели на могоциклах. велосипедах и т. п. В 62 J 33/00 грохотов и сит В 07 В 1/46, 1/56-1/62 карбюраторы с обогревающими устройствами F 02 М 15/02 труб F 16 L 53/00) Ободья колес [В 60 В <5/00-5/04, 21/00-21/12 крепление (к колесам 23/00-23/12 спиц к ободу колеса 1/04, 1/14, 21/06) составные 25/00-25/22) В 21 изготовление (D 53/30 ковкой или штамповкой К 1/38) пробивка отверстий в них D 28/30) термообработка С 21 D 9/34 шлифование В 24 В 5/44] Обоймы патронные F 42 В 39/06 подшипников F 16 С 33/58) Обработка изделий (перед сортировкой В 07 С 5/02 металлов В 24 С 21 D) слоистых изделий В 32 В 31/14 стереотипов В 41 D 5/00-5/06 строительных материалов В 28 D) Обратимые гидромашины F 03 В 3/10 Обратные клапаны [F 16 <К (15/00-15/20 для накачивания шин 15/20 с сервомеханизмами 15/18) в наконечниках смазочных шприцев N 5/02)]  [c.122]

Строительные площадки, используемые для подъемных кранов особого назначения В 66 С 23/(26-34) элементы из пластических материалов В 29 L 31 10) Строны парашютов В 64 D 17/(24-28) подъемных кранов В 66 С 1/12-1/20 в устройствах для перемещения грузов В 65 G 7/12 в шлюпочных устройствах В 63 В 23/22 ) Струбцины (В 25 В 5/00-5/16 для лесопильных станков и т. п. В 27 В 3/38) Стружка [В 27 древесная (изготовление L 11/02-04) использование для изготовления (плоских изделий N 3/00 изделий прессованием N 3/08) удаление при обработке древесины G 3/00) ледяная, машина для получения F 25 С 5/12 В 23 (металлическая, устройства для дробления в токарных станках В 25/02 стальная, изготовление Р 17/06) распылители стружки В 05 В 7/14 снятие с поверхности изделий при резке В 26 D 3/06] Струйные [инжекторы, использование (в системах продувки топлива в ракетных двигательных установках F 02 К 9/54 в смесительных трубках горелок F 23 D 14/16) мельницы В 02 С 19/06 насосы (F 04 (F 5/00-5/54 заливочные D 9/06) F 02 (в газотурбинных установках С 3/32 в реактивных двигателях К 1 /36) паровые в системах подачи воздуха в топку F 23 L 5/04, 17/16 в паровых котлах F 22 (В 37/72, D 7/04) в холодильных машинах F 25 В 1/06) реле F 15 С 1/14-1/20 смесители В 01 F 5/00-5/26 элементы (в следящих гидравлических и пневматических сервоприводах В 9/06-9/07 для счетно-решающих и управляющих устройств С 1/14-1/20) F 15] Струны, устройства для шлифования В 24 В 5/50 Ступени (кузовов автомобилей В 60 R 3/00 на транспортных средствах В 60 R 3/02, В 61 D 23/(00-02)) Ступицы [колес <В 60 В (5/00-5/04 9/00, 27/(00-06) крепление спиц к ним 1/04, 1/14) изготовление ковкой или штамповкой В 21 К 1/40 рулевых В 62 D 1/10)] Стыковая сварка давлением и оплавлением В 23 К 11/(02-04)  [c.184]

Теплоизоляция (лабораторных сосудов В OIL 11/02 роторных компрессоров F 04 С 29/04 самолетов и т. п. В 64 С 1/40 сосудов F 17 С (высокого давления (баллонов) 1/12 низкого давления 3/02-3/10) В 65 D (тара с теплоизоляцией в упаковках) 81/38 труб F 16 L 59/(00-16) центрифуг В 04 В 15/02) Теплолокаторы G 01 S 17/00 Теплоносители, использование в инструментах и машинах для обработки льда F 25 С 5/10 Теплообменники [устройства для регулирования теплопередачи F 13/(00-18), 27/(00-02) паровые на судах В 63 Н 21/10 из пластических материалов В 29 L 31 18 F 27 (подовых печей В 3/26 регенеративные D 17/(00-04) шахтных печей В 1/22) систем охлаждения, размещение на двигателях F 01 Р 3/18] Теплопроводность (использование для сушки материалов F 26 В 3/18-3/26 исследование или анализ материала путем G 01 N (измерения их теплопроводности 25/(20-48) определения коэффициента теплопроводности 25/18)) Термитная сварка В 23 К 23/00 Термодис узия, использование для разделения В 01 D (жидкостей 17/09 изотопов 59/16) Термолюминесцентные источники света F 21 К 2/04 Термометры контактные G 05 D 23/00 Термообработка <С 21 D (железа, чугуна и стали листового металла 9/46-9/48 литейного чугуна 5/00-5/16 общие способы и устройства 1/00-1/84) покрытий С 23 С 2/28 цветных металлов с целью изменения их физической структуры С 22 F 1/00-1/18) Термопары (Н 01 L 35/(28-32) использование <(в радиационной пирометрии J 5/12-5/18 в термометрах К 7/02-7/14) G 01 для регулирования температуры G 05 D 23/22)] Термопластичные материалы [В 29 С (способы и устройства для экст-  [c.188]


Опыты показывают, что характеристики ползучести некоторых материалов различны при растяжении и при сжатии. Это явление связано, возможно, с малой начальной анизотропией материала (например, вследствие обработки давлением), которая практически не сказывается на упруго-пластическом поведении материала при нормальных температурах и относительно кратковременных статических испытаниях, но может оказать существенное влияние на процесс ползучести. В ряде случаев эти различия настолько существенны, что их нельзя не принимать во внимание при расчетах. На рис. 151 изображены, например, крршые ползучести при растяжении и сжатии жаропрочного сплава 5-816 (43,2 / кобальта, 19,9 /q никеля, 19,8 / хрома) при температуре испытания 870°С (по опытам Ерковича и Гварнери, США).  [c.241]

Как отмечалось в гл. 1, удобно различать пять основных состояний деформируемого тела упругое — У, пластическое — П, вязкое — В, высокоэластическое — ВЭ и состояние разрушения — Р, хотя в реальных твердых телах почти всегда возникают сочетания этих состояний упругопластическо-вязкое при горячей обработке давлением и при ползучести состояние разрушения при одновременной пластической деформации при обработке резанием и т. п. Во многих случаях необходимо отличать ранние от развитых или заключительных стадий деформации и разрушения, т. е. оценивать степень развития процесса в данном состоянии, например, величину и темп нарастания пластической деформации, или кинетику развития трещин. Не менее важным для конструктивных и других применений материалов является переход из одного механического состояния в другое, например, из упругого в пластическое, из пластического в состояние разрушения.  [c.252]

Для того чтобы сдвинуть одно тело относительно другого параллельно поверхности контакта, нужно приложить силу — силу трения. Эта сила должна приподнять верхнее тело над нижним для того, чтобы вывести из зацепления выступы и впадины или деформировать упруго и пластически выступы. Обычно происходит последнее — смятие и срез выступов преимущественно на более мягком материале (деформируемое тело) и в меньщей степени на более твердом (инструмент). Поэтому процесс трения при обработке давлением можно рассматривать как процесс пластической деформации тонких приконтактных слоев, протекающий в результате пластической деформации всего объема тела.  [c.169]

В 1874 г. В. Л. Кирпичев [15] предложил и доказал теорему о подобии при упругих явлениях , в которой сформулировал закон подобия (впоследствие перенесенный и на деформации в пластической области). Н. Н. Давиденков [13], применяя анализ размерностей, дал подробное исследование закона подобия для статических и динамических испытаний материалов. Однако имеется много случаев, когда закон подобия оказывается несправедливым. Отклонения от подобия при обработке давлением изучались С. И. Губкиным [11], который показал, что с увеличением объема сопротивление деформированию и пластичность уменьшаются, особенно при высоких температурах из-за различных тепловых условий и влияния контактных сил трения. Наибольшие и наиболее частые отклонения от подобия наблюдаются при разрушении. Поскольку эти отклонения связаны с изменением размеров, они часто обозначаются как масштабный фактор.  [c.313]

Чистовая обработка отверстий давлением применяется после предварительного сверления, рассверливания или растачивания для чистовой обработки глухих и сквозных отверстий диаметром от 7 до 300 мм и различной длины в изделиях из стали, чугуна, цветных сплавов и других металлов, например в трубах, цилиндрах кузнечно-прессового оборудования и других разнообразных деталях. Чистовая обработка давлением основана на пластической деформации металлов и заменяет отделочные опв рации шлифования, хонингования и полирования. В зависимости от конструкции, размеров, требований к поверхности и серийности изделий применяется прошивание м протягивание въ -глаживающими прошивками и протяжками, раскатывание пластинчатыми, роликовыми и шариковыми раскатками жесткого или упругого действия. Указанный вид обработки обеспечивает второй класс точности и девятый-десятый классы чистоты поверхности, а также упрочняет поверхностный слой металла и устраняет недопустимое проникновение в поверхность обрабатываемого металла абразивных зерен, имеющее место при доводке и притирке деталей из сырых сталей и цветных сплавов абразивными материалами. Чистовая обработка давлением выполняется на токарных, сверлильных и других станках. Режимы обработки устанавливаются такими, чтобы избежать перенапряжения поверхностных слоев металла и деформации всей заготовки.  [c.289]

У аустенитных жаропрочных сталей и многих сплавов на основе никеля во время кристаллизации, особенно в условиях сравнительно медленного отвода тепла при отливке обычных кузнечных слитков в изложницы, оси ден-дритов оказываются более насыщенными тугоплавкими составляющими, чем междуосные пространства. При загрязнении шихтовых материалов легкоплавкими металлами и неметаллическими примесями границы кристаллитов обогащаются легкоплавкими, а в ряде случаев и хрупкими соединениями, не входящими в твердый раствор. Из-за таких особенностей структуры слитка во время обработки давлением в условиях напряженного состояния с наличием растягивающих напряжений в первую очередь может наступить нарушение связи между кристаллитами, а не их пластическая деформация. Особо вредное влияние на технологические и служебные свойства сплавов на основе никеля оказывают примеси свинца, сурьмы и мышьяка.  [c.248]

В технологии обработки материалов давлением СМПД является базирующей. Здесь с ее помощью мы изучаем влияние тех условий пластического формоизменения (схемы напряженно-деформированного состояния, температурно-скоростного режима и пр.), которые необходимы для осуществления наиболее производительных операций обработки давлением, исследуем влияние пластической обработки на физико-механические свойства материалов, В целях получения наилучших эксплуатационных качеств изделий и, наконец, устанавливаем в каждом конкретном случае оптимальный характер распределения в заготовках внутренних сил сопротивления — как основу для рационального выбора формы инструмента и мощности оборудования.  [c.27]

Регулирование параметров качества поверхности металлов и, в частности, формы неровностей и упрочнения в широких пределах при резании невозможно. В этом отношении возможности чистовой обработки резанием практически исчерпаны. Это особенно проявляется при необходимости технологического обеспечения непрерывно повышающихся требований к качеству рабочих поверхностей деталей и сравнительно новых конструкционных материалов, какими являются титан и его сплавы. Дальнейшее успешное развитие технологии машино- и приборостроения обусловливает изыскание и широкое исследование прогрессивных процессов чистовой обработки деталей и, в частности, процессов, основанных не на резакии, а на холодном пластическом деформировании поверхности металлов (чистовая обработка давлением).  [c.4]

При более высоких температурах 1050—1150°, при которых обычно производится горячая обработка давлением высоколегированных сплавов типа ЭИ437, интервалы критических деформаций практически при различных скоростях одинаковы. В районе этик температур механизм деформирования у таких металлических материалов соответствует горячему, и на ход пластического деформирования влияния скорости не обнаруживается.  [c.119]

Краткий справочник газосварщика и газорезчика содержит основные данные о газах, газах-эаменителях и горючих жидкостях, применяемых при газопламенной обработке металла. В книге сообщены технические и технологические характеристики аппаратуры и оборудования для газовой сварки и резки, приведены правила эксплуатации и методы ремонта аппаратуры и оборудования, а также изготовления быстроизпашивающихся деталей. Приведены некоторые данные о материалах для ремонта и эксплуатации оборудования. По вопросам технологии сообщаются сведения о газовой сварке малоуглеродистых,средне- и высокоуглеродистых сталей, высоколегированных нержавеющих и жаропрочных сталей и сплавов с высоким омическим сопротивлением, а также о сварке чугуна и цветных металлов и сплавов сообща ются краткие сведения о сварке пластических материалов. Подробно освещены вопросы машинной и ручной кислородной разделительной резки сталей разной толщины, резки кислородом низкого давления, кислородно-флюсовой резки, резки кислородным копьем и поверхностно-кислородной резки. Приводятся данные о методах контроля сварных соединений.  [c.2]



Смотреть страницы где упоминается термин Обработка давлением пластических материалов : [c.84]    [c.13]    [c.116]    [c.138]    [c.141]    [c.143]    [c.182]    [c.190]    [c.456]    [c.269]   
Смотреть главы в:

Технология металлов и конструкционные материалы  -> Обработка давлением пластических материалов



ПОИСК



Материал пластический

Обработка давлением

Примеры расчетов в задачах горячей обработки давлением. Методы теории пластического течения материалов



© 2025 Mash-xxl.info Реклама на сайте