Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение коэффициентов теплопроводности

В приборе для определения коэффициента теплопроводности материалов между горячей и холодной поверхностями расположен образец из испытуемого материала (рис. 1-6).  [c.9]

В приборе для определения коэффициента теплопроводности жидкостей по методу нагретой нити (рис. 1-12) в кольцевой зазор между платиновой нитью и кварцевой трубкой залито испытуемое трансформаторное масло. Диаметр и длина платиновой нити rfi = 0,12 мм и /=90 мм внутренний и наружный диаметры кварцевой трубки d2=l мм и йз = 3 мм коэффициент теплопроводности кварца Х=1,4 Вт/(м-°С).  [c.16]


Определение коэффициентов теплопроводности  [c.519]

Коэффициенты теплопроводности определяют при стационарном и нестационарном режимах. Ниже рассматриваются лишь основные методы определения коэффициентов теплопроводности, получившие широкое распространение, такие, как стационарный метод трубы, стационарный метод плиты и нестационарный метод регулярного режима.  [c.519]

При экспериментальном определении коэффициента теплопроводности методом регулярного режима необходимо знать коэффициент теплоотдачи от охлаждаемого калориметра к воздуху в камере спокойного воздуха или в воздушном термостате, где воздух должен иметь постоянную температуру.  [c.525]

Стационарные методы определения коэффициента теплопроводности по характеру измерений делятся на абсолютные и относительные. В абсолютных методах измеряемые в эксперименте величины дают возможность по расчетной формуле (6-6) получить значение коэффициента теплопроводности. В относительных методах измеряемых величин для расчета X оказывается недостаточно. В этом случае большее распространение получил метод сравнения коэффициента теплопроводности исследуемого материала с коэффициентом эталона. При этом в расчетную формулу входит X эталона. Относительные методы имеют определенные преимущества перед абсолютными, так как более просты. Однако отсутствие эталонных . материалов, особенно при высоких температурах, накладывает ограничения на их широкое применение.  [c.125]

В работах 100, 101, 104] проводится оценка точности определения коэффициентов теплопроводности покрытий и рассчитываются возможные поправки. Суммарная погрешность в интервале температур 500—1400 К при толщине слоя до 0,3- Ю-з м составляет 6,5—16%. В том случае, когда расчетные формулы вычисления X выведены при допущении, что для тонкого слоя, нанесенного на цилиндрический нагреватель, могут быть использованы выражения для плоской стенки [101], погрешность возрастает до 30—50%.  [c.132]

В работе [58] описан плоский прибор для определения коэффициента теплопроводности покрытий, основанный на стационарном методе (абсолютный вариант). Как  [c.132]

На диаграммной ленте (рис. 6-10) производится запись температуры нагревателя Г(0, х) — Гер—-/i температуры в точке x= R, т. R, х) — r p = f2l/x. После установления квазистационарного режима эти функции имеют линейный характер, т. е. параллельные графики. Для определения коэффициента теплопроводности на термограмме измеряют разность температур (То—Тд) — отрезок аЬ. Величину коэффициента тепловой активности стержня можно вычислить по тангенсу угла ф  [c.138]


В работе [101], помимо определения коэффициента теплопроводности, проведены измерения и степени черноты покрытия из окиси алюминия, нанесенного плазменным способом (схема установки приведена на рис. 6-2, там же см. ее описание). Для расчета интегральной степени черноты получена формула  [c.168]

Коэффициент теплопроводности строительных и теплоизоляционных материалов имеет значения в пределах 0,023— 2,9 Вт/(м-К) и возрастает с увеличением температуры (рис. 14.9). Строительные и изоляционные материалы, как правило, представляют собой пористые, волокнистые или зернистые материалы, сухие или насыщенные влагой, т. е. являются такими телами, которые принято называть гетерогенными. Для таких тел в обычном определении коэффициент теплопроводности неприменим, так как X для этих тел зависит не только от свойств материала, составляющего основу — скелет , но и от пористости и влажности. Для гетерогенных тел применяется понятие эффективного коэффициента теплопроводности.  [c.206]

Очень важно иметь зависимость теплофизических свойств горных пород от такого параметра, который можно сравнительно просто определить в наземных и пластовых условиях. Таким параметром может служить удельное электрическое сопротивление р. Обобщение экспериментальных данных позволяет получить формулы для определения коэффициентов теплопроводности и температуропроводности известняков по известному электрическому сопротивлению при температуре Г = 300 К (табл. 8).  [c.216]

Экспериментальное определение коэффициента теплопроводности  [c.145]

Как было сказано, коэффициент теплопроводности является физическим параметром вещества. В общем случае коэффициент теплопроводности зависит от температуры, давления и рода вещества в большинстве случаев коэффициент теплопроводности для различных материалов экспериментального определения коэффициента теплопроводности [Л. 122, 39, 143, 190, 193]. Большинство из них основано на измерении теплового потока и градиента температур в заданном веществе.  [c.12]

Для определения коэффициента теплопроводности выбирают ламбда-калориметр. Обычно калориметр строят в виде шара. Сущность метода заключается в том, что создают условия охлаждения, когда коэф-  [c.105]

Соотношения (и) и (к) могут быть использованы для оценки неравномерности поля температур различных объектов на их основе разработаны экспериментальные методы определения коэффициента теплопроводности, коэффициента теплоотдачи и др.  [c.227]

Удобно определять коэффициент теплопередачи конвекцией h точно таким же образом, как это было сделано при определении коэффициента теплопроводности k [см. (8.4)]  [c.214]

Имеются также работы [20], посвященные определению модуля сдвига по косвенным параметрам, например, по значению коэффициента теплопроводности. Экспериментально было установлено, что между модулем межслоевого сдвига стеклопластика имеется устойчивая связь с коэффициентом теплопроводности, при этом коэффициент корреляции равен 0,967, т. е. предлагается производить определение модуля сдвига не по параметрам скорости сдвиговых волн, а по значениям коэффициента теплопроводности. По-видимому, трудно согласиться с автором этого предложения в эффективности такой замены, так как точность определения коэффициента теплопроводности особенно в изделиях еще низка.  [c.78]

Экспериментальное определение коэффициента теплопроводности веществ может быть осуществлено стационарными и нестационарными методами [Л. 166, 167]. Наибольшее количество экспериментальных данных по теплопроводности органических и кремнийорганических теплоносителей получено стационарными методами — преимущественно методом коаксиальных цилиндров.  [c.195]

В последнее время для экспериментального определения коэффициента теплопроводности веществ разрабатываются и успешно применяются методы, основанные на нестационарном тепловом потоке [Л. 166, 167]. Для определения коэффициента теплопроводности газов и жидкостей в широком интервале температур и давлений разработан ряд нестационарных методов. Эти методы, их реализация, достоинства и недостатки рассматриваются в работах [Л, 166, 167, 171, 172].  [c.203]

Рис, 3-37, Принципиальная схема установки МЭИ для определения коэффициента теплопроводности.  [c.206]


Рис. 21. Схема прибора для определения коэффициентов теплопроводности Рис. 21. <a href="/info/293655">Схема прибора</a> для <a href="/info/2768">определения коэффициентов</a> теплопроводности
Однако опыт показал, что даже самая тщательная обработка поверхностей соприкосновения не устраняет полностью воздушных зазоров. Чтобы исключить влияние последних, пользовались следующим методом между соприкасающимися поверхностями помещался порошок очень тонкого помола, приготовленный из того же материала, что и образец. Порошок заполнял воздушные зазоры между соприкасающимися поверхностями, что способствовало уменьшению погрешности в определении коэффициента теплопроводности.  [c.64]

Естественно, достоверность полученной информации намного возрастает, если известны две первые низкотемпературные ступеньки кусочно-постоянной аппроксимации коэффициента теплопроводности (рис. 3-13) начальное значение, характеризующее теплопроводность материала до начала термического разложения органических компонент, и конечное, дающее уровень теплопроводности по заверщении этого разложения. Важно отметить, что для большинства органических связующих разложение заканчивается раньше, чем начнет проявляться влияние лучистого переноса в порах. Поэтому для определения коэффициента теплопроводности материала после завершения реакции разложения можно использовать соотношения между величиной пористости Я и коэффициентом X.  [c.344]

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ РАСПЛАВЛЕННОГО АЛЮМИНИЯ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 725—1570°С (новый радиационный метод)  [c.83]

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ТЕПЛОПРОВОДНОСТИ ЖИДКОСТЕЙ НА ОСНОВЕ ТЕОРИИ РЕГУЛЯРНОГО РЕЖИМА  [c.385]

К о н д р а т ь е в Г. М. Новый сравнительный метод определения коэффициента теплопроводности плохих проводников тепла и основанный на нем прибор—шаровой бикалориметр. Точная индустрия № 6, 1935.  [c.408]

МЕТОДЫ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ  [c.18]

Вследствие плохой пригонки между холодной и горячей поверхностями и образцом образоиались воздушные зазоры толщиной бп = = 0,1 мм. Вычислить относительную ошибку в определении коэффициента теплопроводности Д , если при обработке результатов изме-  [c.10]

Для определения коэффициента теплопроводности широко используются три метода, которые подразделяются в зависимости от геометрии создаваемого поля температур [79]. Тепловой поток тиожет быть направлен вдоль оси симметрии (плоские изотермы), по радиусу цилиндра (цилиндрические изотермы), по радиусу сферы (сферические изотермы) отсюда название установок, в которых эти методы реализуются, — плоские, цилиндрические и шаровые, Следует заметить, что применение шаровых приборов вносит трудности, связанные с расположением термопар по изотермически. поверхностям значительной кривизны. Описан [39] прибор, в котором шарообразный образец заменен образцом в виде вытянутого эллипсоида вращения. В этом случае значительно уменьшается кривизна изотермической поверхности.  [c.124]

Для определения коэффициентов теплопроводности тонкослойных материалов может быть применен стационарный метод с использованием датчиков теплового потока (тепломеров). Формальное преимущество теплометрического подхода состоит в том, что он позволяет в правой части уравнения теплопроводности использовать вместо дифференциального оператора второго порядка по температуре (6-3) оператор первого порядка по тепловому потоку. Пер-  [c.135]

Существенным условием правильного определения коэффициента теплопроводности является отсутствие воздушных зазоров между поверхностью образца и поверхностями холодильника и нагревателей. Для этого соприкасающиеся поверхности тщательно шлифовались и образец при полющи винта 9 плотно зажимался между холодильником и нагревателями.  [c.64]

Средняя вероятная ошибка экспериментального определения коэффициента теплопроводности расплавленного алюминия в инт вале температур 725—1570° С составляет в наших опытах около -+-10%. что рполне достаточно для инженерных расчетов.  [c.91]

Теплоизоляция (лабораторных сосудов В OIL 11/02 роторных компрессоров F 04 С 29/04 самолетов и т. п. В 64 С 1/40 сосудов F 17 С (высокого давления (баллонов) 1/12 низкого давления 3/02-3/10) В 65 D (тара с теплоизоляцией в упаковках) 81/38 труб F 16 L 59/(00-16) центрифуг В 04 В 15/02) Теплолокаторы G 01 S 17/00 Теплоносители, использование в инструментах и машинах для обработки льда F 25 С 5/10 Теплообменники [устройства для регулирования теплопередачи F 13/(00-18), 27/(00-02) паровые на судах В 63 Н 21/10 из пластических материалов В 29 L 31 18 F 27 (подовых печей В 3/26 регенеративные D 17/(00-04) шахтных печей В 1/22) систем охлаждения, размещение на двигателях F 01 Р 3/18] Теплопроводность (использование для сушки материалов F 26 В 3/18-3/26 исследование или анализ материала путем G 01 N (измерения их теплопроводности 25/(20-48) определения коэффициента теплопроводности 25/18)) Термитная сварка В 23 К 23/00 Термодис узия, использование для разделения В 01 D (жидкостей 17/09 изотопов 59/16) Термолюминесцентные источники света F 21 К 2/04 Термометры контактные G 05 D 23/00 Термообработка <С 21 D (железа, чугуна и стали листового металла 9/46-9/48 литейного чугуна 5/00-5/16 общие способы и устройства 1/00-1/84) покрытий С 23 С 2/28 цветных металлов с целью изменения их физической структуры С 22 F 1/00-1/18) Термопары (Н 01 L 35/(28-32) использование <(в радиационной пирометрии J 5/12-5/18 в термометрах К 7/02-7/14) G 01 для регулирования температуры G 05 D 23/22)] Термопластичные материалы [В 29 С (способы и устройства для экст-  [c.188]

Метод плоского бикалориметра (в условиях а -> оо) подвергся экспериментальной разработке в 1949—1950 гг., причем он оказался пригодным для определения коэффициентов теплопроводности и тепловых сопротивлений разнообразнейших материалов, не только листовых и слоистых—бумаги, асбеста, пенопластов и т. п., но и волокнистых и сыпучих. Объемный вес испытанных материалов колебался в широчзйших пределах от 10 до 2000 кг/л и даже выше [51].  [c.361]


Существует теоретическая зависимость, предложенная Пред-вод игелевым А. С. для определения коэффициента теплопроводности чистых металлов  [c.8]

Однако использование приведенного соотношения для определения коэффициента теплопроводности пористого тела требует наличия данных по фазовшу составу порисгого тела, их теплопроводности л др. iKpoMe того, закон аддитивности не учитывает достаточно полно реальную структуру пористого тела и действительные процессы распространения тепла. Поэтому существующие прибли-жеиные методы теоретического расчета применяются лишь для качественной оценки экспериментальных результатов, получаемых по теплопроводности пористых тел.  [c.12]


Смотреть страницы где упоминается термин Определение коэффициентов теплопроводности : [c.130]    [c.199]    [c.203]    [c.356]    [c.519]    [c.520]    [c.33]   
Смотреть главы в:

Техническая термодинамики и теплопередача  -> Определение коэффициентов теплопроводности



ПОИСК



Коэффициент давления газов теплопроводности — Определение

Коэффициент теплопроводности

Коэффициент — Определение

Лозовский В. Н., Уд я иска я А. И., Николаева Е. А. Определение коэффициента теплопроводности жидких сплавов при высоких температурах методом зонной плавки с градиентом температуры

Мел — Коэффициент теплопроводност

Методы определения коэффициента теплопроводности

Никольский. Экспериментальное определение коэффициента теплопроводности расплавленного алюминия в интервале температур

Определение коэффициента теплопроводности и экстраполяция кривых охлаждения

Определение коэффициента теплопроводности изоляции обмотки высоковольтной электромашины

Определение коэффициентов теплоотдачи и теплопроводности

Определение коэффициентов теплопроводности жидкостей на основе теории регулярного режима Идея устройства шарового бикалориметра для определения теплопроводности жидкостей. Два варианта метода

Определение коэффициентов теплопроводности плохих проводников

Перевод британских единиц в метрические для определения коэффициента теплопроводности

Приборы для определения коэффициента теплопроводности

Установившаяся температура. Определение коэффициента теплопроводности

Экспериментальное определение коэффициента теплопроводности



© 2025 Mash-xxl.info Реклама на сайте