Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние инструмента на точность обработки

Выбор материала и профиля рабочей части. Влияние инструмента на точность обработки (табл. 7—10). Точность при ЭИМ обработке в основном определяется суммарной погрешностью горизонтальных размеров  [c.685]

ВЛИЯНИЕ ИНСТРУМЕНТА НА ТОЧНОСТЬ ОБРАБОТКИ  [c.383]

При обработке на настроенных станках износ инструмента приводит к рассеянию размеров обработанных поверхностей заготовок, что снижает качество сборки деталей в условиях взаимозаменяемости. Уменьшить влияние износа на точность обработки можно периодической подналадкой станка.  [c.273]


Характерно отметить, что смена режущего инструмента на автоматической линии осуществляется с большими отклонениями от графика число обработанных заготовок одним инструментом до его смены иногда превышает расчетное в десятки раз. При таких условиях размерный износ инструмента достигает недопустимо больших величин и существенно увеличивает суммарную погрешность обработки. При этом следует учесть влияние силовых нагрузок, возрастающих по мере притупления инструментов на точность обработки.  [c.93]

Применение автоматических подналадчиков в значительной мере уменьшает влияние размерного износа режущего инструмента на точность обработки.  [c.314]

С целью уменьшения влияния погрешностей режущего инструмента на точность обработки необходимо  [c.100]

Следует иметь в виду, что влияние износа на точность обработки осложняется явлением нароста на передней грани режущего инструмента. Граница отложения нароста может выходить за пределы режущей кромки, что в некоторой степени компенсирует износ по задней грани.  [c.220]

Фиг. 162. Влияние износа инструмента на точность обработки с автоматическим подналадчиком. Фиг. 162. Влияние <a href="/info/126219">износа инструмента</a> на точность обработки с автоматическим подналадчиком.
Применение автоматических подналадчиков в значительной мере уменьшает влияние размерного износа режущего инструмента на точность обработки. На фиг. 162 дана схема работы автоматического подналадчика. По оси ординат отложено приращение радиальных размеров обрабатываемых деталей в результате размерного износа инструмента по оси абсцисс — время (или путь, проходимый инструментом в металле заготовки). Верхняя кривая характеризует протекание размерного износа в зависимости от времени или пути резания.  [c.231]

Влияние формы режущей кромки инструмента на точность обработки выражается слабо. Оно может сказаться лишь косвенно, через изменение усилий резания в результате изменения размеров поперечного сечения снимаемой стружки.  [c.322]

Исследование тепловых явлений при резании металлов до последнего времени обычно связывалось с изучением вопросов стойкости инструмента. Однако эти явления оказывают большое влияние и на точность обработки.  [c.95]


Нарушение точности форм исполнительных поверхностей в продольном сечении может привести к погрешности установки детали в патроне (для исполнительной поверхности Б) или к возможному повороту резцедержателя с инструментом (для исполнительной поверхности Д), что, в конечном итоге, отразится на точности обработки (рис. 1.2, в). Нарушение точности формы исполнительных поверхностей в поперечном сечении (например, эллипсность) может привести к нарушению точности относительного положения исполнительных поверхностей, влияние которого на точность обработки будет аналогично случаю, рассмотренному на рис. 1.2, б.  [c.57]

Погрешности обработки, обусловленные неточностью изготовления режущего инструмента для совокупности партий деталей являются случайными погрешностями, влияние которых на точность обработки, как это будет показано ниже, сходно с влиянием погрешностей настройки.  [c.15]

Погрешность износа. Из систематических переменных погрешностей на точность диаметральных размеров оказывает влияние-в основном износ режущего инструмента. Преимущественное влияние износа инструмента на точность обработки обусловливает смещение центра группирования лишь в одну сторону (фиг. 69). Существенного влияния на точность обработки тепловых деформаций резцов не обнаружено.  [c.137]

Применение автоматических подналадчиков в значительной мере уменьшает влияние размерного износа режущего инструмента на точность обработки. На рис. 30 дана схема работы автоматического подналадчика. По оси ординат отложено приращение радиальных размеров обрабатываемых деталей в результате размерного износа  [c.85]

Закрепление инструмента. На точность обработки отверстия разверткой большое влияние оказывает неправильное расположение или установка детали относительно инструмента, в результате чего в технологическую операцию искусственно вводятся факторы, нарушающие нормальный процесс развертывания.  [c.85]

Влияние износа станка и инструмента на точность обработки  [c.19]

Установка магазинов агрегатированных автономных устройств АСИ вне станка на отдельном фундаменте обеспечивает большую вместимость магазина, удобство его обслуживания и исключает, благодаря отсутствию связи со станком, влияние переменного веса комплекта инструмента и вибрации при перемещении магазина для поиска инструмента во время работы станка, а также влияние тепла на. точность обработки. Значительное расстояние магазина от рабочей зоны станка обеспечивает предохранение инструментов от попадания стружки, эмульсии, чугунной пыли и т. д.  [c.420]

Основная задача, которая решается при использовании средств активного контроля, — это повышение размерной точности деталей за счет устранения влияния на точность обработки износа режущего инструмента, тепловых и силовых деформаций технологической системы. Однако необходимо иметь в виду, что погрешности геометрической формы деталей, вызванные несовершенством отдельных узлов станка, не компенсируются средствами контроля. Поэтому применение даже самых точных приборов не дает возможности гарантировать получение высокой размерной точности изделий, если какой-либо из элементов системы станок—приспособление—деталь—инструмент не отвечает определенным требованиям.  [c.9]

На основании анализа этих данных были сделаны следующие выводы. Наибольшее влияние на точность обработки и стойкость инструмента оказывает недостаточная жесткость шпинделей силовых головок, насадок и поворотного стола [31]. Точность, надежность и долговечность механизма фиксации снижаются вследствие больших динамических нагрузок и влияния зазоров [30].  [c.13]

В качестве примера на рис. 4 показано влияние формы изношенной поверхности направляющих головки 2 гидрокопировального станка на точность обработки отверстия детали 1. Износ направляющих изменяет первоначальную траекторию движения инструмента, что приводит к искажению получаемой формы изделия.  [c.172]


Деформации упругой системы станок — деталь — инструмент возникают под действием приложенных к системе сил и оказывают существенное влияние на точность обработки.  [c.6]

Закрепление деталей при обработке на металлорежущих станках сопровождается возникновением деформаций, являющихся частью общей деформации упругой системы станок — деталь —инструмент. Эти деформации оказывают большое влияние на точность обработки.  [c.14]

Комплексное проведение производственных исследований точности работы действующих автоматических линий, экспериментальных исследований и теоретического анализа должно дать ответы на следующие основные вопросы проектирования технологических процессов производства корпусных деталей на автоматических линиях а) обоснование для выбора технологических методов и числа последовательно выполняемых переходов для обработки наиболее ответственных поверхностей деталей с учетом заданных требований точности б) установление оптимальной степени концентрации переходов в одной позиции, исходя из условий нагружения и требуемой точности обработки в) выбор методов и схем установки при проектировании установочных элементов приспособлений автоматических линий для обеспечения точности обработки г) рекомендации по применению и проектированию узлов автоматических линий, обеспечивающих направление и фиксацию режущих инструментов в связи с требованиями точности обработки д) выбор методов настройки станков на требуемые размеры и выбор контрольных средств для надежного поддержания настроечного размера е) обоснование требований к точности станков и к точности сборки автоматической линии по параметрам, оказывающим непосредственное влияние на точность обработки ж) обоснование требований к точности черных заготовок в связи с точностью их установки и уточнением в ходе обработки, а также установление нормативных величин для расчета припусков на обработку з) выявление и формирование методических положений для точностных расчетов при проектировании автоматических линий.  [c.98]

В промышленности применяют большое количество немерных режущих инструментов — проходные резцы, торцовые фрезы и др. Погрешность изготовления этих инструментов непосредственного влияния на точность обработки не оказывает.  [c.82]

Адаптивное управление износом режущего инструмента. На процесс обработки существенное, а часто и определяющее влияние оказывает правильность эксплуатации режущего инструмента, повышение стойкости которого в большинстве случаев основывается на применении более совершенных твердых сплавов, быстрорежущих сталей, специальных покрытий и т. п. Однако неправильное использование прогрессивных инструментальных материалов при обработке деталей может не дать желаемого эффекта. Это связано не только с изменением качественных характеристик режущей части инструмента, но и с влиянием таких факторов, как колебание припуска и твердости обрабатываемых заготовок, точность деталей, уровень размерной настройки технологической системы и др.  [c.106]

Величина износа и форма изношенной поверхности направляюш,их станков оказывают непосредственное влияние на точность обработки, вызывая искажение траектории движения изделия или инструмента. При этом суш,ественное значение имеет конструкция направляю-Ш.ИХ и принятый метод обработки.  [c.149]

Точностные расчеты выполняют для вновь проектируемого технологического процесса и для действующих агрегатных станков и автоматических линий. На проектной стадии, используя (1) и (2) и приняв Дсм = Дсм. доге Выби-рают конструктивно-технологические параметры минимальную длину сменной кондукторной втулки и наибольший допустимый зазор 5, между сменной втулкой и инструментом. Используя (9), выбирают параметры режущего инструмента (длину наладки, диаметр, число зубьев и т. д.). В эксплуатационных условиях необходимо ограничить влияние износа кондукторных втулок и установочных элементов приспособления на точность обработки.  [c.480]

Последовательность переходов обработки точных плоских поверхностей и отверстий должна устанавливаться с учетом уменьшения влияния на точность обработки таких факторов, как геометрические неточности станка и его наладки, инструмента и его наладки на размер, погрешностей базирования и закрепления заготовки, температурные и другие деформации элементов технологической системы, перераспределение напряжений и деформаций заготовки в процессе ее обработки и т. д.  [c.562]

Предполагалось, что применение ССПУ при фрезеровании пера лопаток позволит компенсировать влияние упругих деформаций и износа инструмента на точность обработки.  [c.138]

На примере обработки детали в соответствии со схемой 1 относительного движения детали и инструмента (см. рис. 1.30, б) было проведбно аналитическое исследование влияния отклонений размерных параметров относительного движения технологических баз детали и вершины режущего инструмента на точность обработки. Были рассмотрены три характерных вида отклонений параметров отклонение постоянное на протяжении всей обработки детали, отклонение переменное в функции координаты положения режущего инструмента на оси ОдХд и отклонение переменное в функции угла поворота (фд) детали.  [c.96]

Неточность и износ инструментов. Изготовление инструмента осуществляется с высокой точностью, но режущий инструмент имеет значительный износ в процессе его работы. Обычно точность обработки связана с точностью изготовления режущего инструмента. Допуски на изготовление инструмента регламентируются ГОСТом. Существенно сказывается точность изготовления инструмента на точности обработки при работе мерным или профильным инструментом. Мерный инструмент копирует свои размеры непосредственно в теле детали (сверло, развертка, метчик и др.). Обработка профильным инструментом характерна тем, что его профиль переносится на обрабатываемую деталь (фасонные резцы, фрезы и др.). Имеются инструменты, которые являются одновременно мерными и фасонными, например протяжки, фасонные развертки и др. В процессе обработки деталей режущий инструмент изнашивается по режущим кромкам и постепенно изменяет свою форму и разкеры, но еще более значительные изменения претерпевает инструмент при заточках, особенно остроконечный инструмент. Инструмент изнашивается как по передней, так и по задней грани режущей кромки. Износ резца по передней грани существенно влияет на чистоту обработки и снижает прочность инструмента, но на точность обработки он влияет меньше, чем износ по задней грани. Износ инструмента характеризуется укорочением его в нормальном направлении к обрабатываемой поверхности, что ведет к изменению положения режущей кромки инструмента относительно базовой поверхности и изменению размера и формы обрабатываемой поверхности. Особое влияние на износ инструмента оказывает скорость резания. Подача и глубина резания в меньшей степени влияют на износ инструмента. Экспериментальные данные показывают, что подача больше влияет на износ резца, чем глубина резания. Кроме того, на износ инструмента влияет его конструкция, в частности большое влияние оказывает задний угол а. Увеличение угла а от 8 до 12° способствует повышению размерного износа инструмента. Износ резца по задней грани в натуральную величину переносится на обрабатываемую поверхность, снижая точность обработки. Если резец износится по задней грани на 0,1 мм, то диаметр обрабатываемой наружной цилиндрической поверхности увеличится на 0,2 мм. Если обработка ведется широколезвийным инструментом, то износ резца по задней грани влияет на размер и форму обрабатываемой поверхности. Износ резца пропорционален пути, пройденному лезвием инструмента в теле обрабатываемой детали, и зависит от материала инструмента, обрабатываемой детали, геометрии инстру-44  [c.44]


Для создания теоретических основ технологии машиностроения большое значение имели работы Н. А. Бородачева по анализу качества и точности производства К. В. Вотинова, осуществившего обширные исследования жесткости технологической системы станок — приспособление — инструмент — заготовка и ее влияния на точность обработки А. А. Зыкова и А. Б. Яхина, положивших начало научному анализу причин возникновения погрешностей при обработке. В 1959 г. вышла книга В. М, Кована Основы технологии машиностроения , обобщившая научные положения технологии машиностроения и методику технологических расчетов, относящиеся к различным отраслям машиностроения. Задачи экономии металла и повышения производительности труда при механической обработке теоретически обоснованы Г. А. Шаумяном.  [c.7]

Наибольшими возможностями в отношении повышения точности и производительности обладают новые способы окончательной и доводочной обработки. Большинство из них связано с применением синтетических алмазов и кубического нитрида бора (эльбора). Алмазные и эльборовые круги отличаются высокой размерной стойкостью и обеспечивают в 1,5—2,5 раза более высокую производительность, чем инструмент из обычных абразивных материалов. Тарельчатые круги с эльбороносным слоем позволяют получать зубчатые колеса 4—5-й степеней точности и избежать образования при шлифовании прижогов. Высокая режуш,ая способность и стойкость алмазных брусков гарантируют не только существенное улучшение чистоты поверхности, но и устранение погрешностей формы отверстия при хонинговании. Большим достоинством является также то, что при работе алмазным инструментом резко снижается влияние на точность обработки теплового фактора.  [c.6]

Точность технологического процесса является наиболее сложным его свойством, на которое воздействуют многие факторы (рис. 7). Работы автора и других исследователей [9—16 19 21 24 25] показали, что решающее влияние на точность обработки деталей на токарных автоматах и полуавтоматах оказывают точность и жесткость станка и технологической оснастки, методы наладки станков и износ режущего инструмента. Эти вопросы подробно расмотрены в гл. IV—VI данной работы.  [c.26]

На точность изготовления деталей влияет субъективный фактор. В первом случае это влияние сказывается индивидуально в процессе обработки каждой детали, во втором—на партию деталей, снимаемых со станка между его настройками или поднаст-ройками на заданный размер. Влияние субъективного фактора на точность обработки устраняется применением методов, связанных с использованием режущих инструментов разверток, протяжек, фасонных фрез, калибровочных резцов для канавок и нр. Точность выполнения диаметральных размеров отверстий в данном случае не зависит от квалификации станочника или наладчика.  [c.175]

Устройства, контролирующие размеры деталей в процессе обработки на металлорежущих станках, должны отвечать следующим требованиям 1) возможность измерения деталей, совершающих быстрое технологическое движение, а иногда и несколько движений 2) независимость точности измерений от направления и скорости технологического движения 3) возможность компенсации влияния на точность обработки технологических факторов износа режущего инструмента, силовых и температурных деформаций и вибраций 4) наличие показывающего прибора, позволяющего следить за изменением контролируемого параметра 5) дистанционность измерений размещение показывающего прибора в месте, удобном для наблюдения и исключающем возможность его повреждения 6) в устройствах автоматического активного контроля — наличие датчика, обеспечивающего подачу команд на управление станком 7) усреднение результатов измерения (независимость показаний прибора или момента срабатывания датчика от случайных факторов попадания частиц стружки, абразивной пыли и др. под измерительные наконечники, кратковременного перемещения измерительных наконечников под влиянием инерционных и других сил и т. д.) 8) надежная работа контрольных устройств в присутствии охлаждающей жидкости, абразивной пыли и стружки 9) возможность механизированного и автоматизированного подвода и отвода измерительных наконечников (или всего прибора) от контролируемой поверхности без потери настроечного размера при установке и снятии обрабатываемой детали со станка 10) унификация и нормализация конструкций датчиков и элементов контрольных устройств, обеспечивающая возможности их серийного изготовления и применения в различных случаях измерения, на разных станках, высокую надежность и долговечность, экономичность, простоту наладки, обслуживания и ремонта.  [c.92]

Применение средств второй группы обеспечивает при прочих равных уыювиях меньшую точность обработки, чем средства первой группы. Они устраняют влияние на точность обработки только износа режущего инструмента и сравнительно медленных температурных деформаций системы СПИД.  [c.4]

Специфика рассматриваемой операции шлифования заключается в том, что прибор активного контроля управляет рабочим циклом по размеру детали, давая команду на переключение режима чернового и чистового шлифования. Исключение составляет этап выхаживания, которое прекращается по времени. Управление по размеру исключает влияние на точность обработки тепловых явлений в станке и инсурументе и размерного износа инструмента. Управление по времени на этапе выхаживания приводит к рассеиванию размеров из-за погрешностей упругой деформации системы СПИД и температурных деформаций детали. Однако измерение прибором активного контроля глубины желоба, равной полуразности двух диаметральных размеров (цилиндрической поверхности буртика и диаметра желоба), почти исключает влияние на точность обработки тепловых погрешностей детали. Погрешность установки и геометрические неточности элементов станка на размер детали здесь влияния не оказывают, сказываясь лишь на ее форме. В связи с этим в формуле (14.Ь) для расчета технологического размера имеет место только одна составляющая погрешности — величина упругой деформации технологической системы СПИД -перед выхаживанием Кг. Таким образом, глубина желоба после шлифования определяется суммой настроечного размера Н , по которому станок переключается на этап выхаживания, и погрешности упругой деформации Y2, определяемой уравнениями (14.51)—(14.18).  [c.494]

В тех случаях, когда принимают осевые ин-струмены (сверла, зенкеры, развертки, протяжки, пазовые фрезы), погрешности наладки зависят от действительных размеров устанавливаемых инструментов и определяются допусками на изготовление инструментов. Колебания размеров инструментов при каждой их смене влияют на точность обработки аналогично влиянию погрешности А наладки станка на выдерживаемый размер.  [c.70]

Обработка на станках с вертикальной осью нращения револьверной головкн. Для устранения влияния погрешностей индексации и фиксирования револьверной головки на точность обработки, а также повышения жесткости технологической системы пользуются направляющей штангой, укрепляемой на шпиндельной бабке и дополнительно центрирующей головку (рис. 55), или направляют закрепленный в головке инструмент по втулке, вмонтированной в приспособление (рис. 56) для закрепления штучной заготовки. Режущий инструмент устанавливают в револьверной головке с учетом наименьшего влияния на точность обработки погрешности индексации (рис. 57). Для вытачивания канавок применяют рычажные, реечные или винтовые приспособления (рис. 58). Профильные поверхности обрабатывают фасонными резцами, установленными на суппорте (рис. 59), или с помощью копирных устройств (рис. 60, 61). Нежесткие заготовки обтачивают с поддержкой центром.  [c.267]



Смотреть страницы где упоминается термин Влияние инструмента на точность обработки : [c.6]    [c.135]    [c.198]    [c.197]    [c.314]   
Смотреть главы в:

Справочник технолога машиностроителя Том 2  -> Влияние инструмента на точность обработки



ПОИСК



Влияние деформации станка, инструмента и обрабатываемой детали на точность обработки

Влияние жесткости системы станок — приспособление — инструмент — деталь на точность токарной обработки — Влияние температурных деформаций станка, резца и детали на точность токарной обработки

Влияние износа станка и инструмента на точность обработки

Влияние обработки

Обработка Точность обработки

Определение влияния упругих деформаций системы станок — инструмент — обрабатываемая деталь на точность обработки



© 2025 Mash-xxl.info Реклама на сайте