Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внутренние напряжения в основном металле н покрытиях

Образование ст-фазы сопровождается сильным уменьшением объема и, следовательно, является возможным источником возникновения больших внутренних напряжений в металле. Поэтому многие исследователи считают, что образование ст-фазы может вызвать разрушение хромового покрытия при длительной эксплуатации. Под хромированным слоем виден под микроскопом обезуглероженный слой глубиной до 0,8 мм, а затем основной металл с феррито-бейнитной или феррито-перлитной структурой.  [c.244]


Предварительно необходимо коротко остановиться на следующем. Конструктор должен исходить из общих размеров сечения. Так как известно, что почти у всех гальванически осажденных металлов механические свойства, особенно модуль упругости, отличаются от соответствующих свойств основного материала (например, стали или легких металлов), то недопустимо при толщине покрытия, превышающей 50 мкм, исходить в расчетах на прочность из общих размеров. По условиям надежности детали в работе следовало бы всегда вводить в расчет сечение материала без покрытия. Однако в расчете может быть учтено различное сопротивление основного материала и покрыт Я, но для этого необходимо знать коэффициенты, характеризующие их прочность. У гальванических покрытий таких коэффициентов нет, так как некоторые свойства изменяются в условиях осаждения, а частично и в результате еще мало изученного влияния собственных напряжений. Поэтому при изучении данных испытаний необходимо уточнить, к каким сечениям относятся показатели прочности. Чтобы более полно учитывать зависимость между прочностью и состоянием внутренних напряжений, для отдельных покрытий приведены характерные величины, относящиеся к собственным напряжениям.  [c.185]

Работоспособность и долговечность деталей, восстановленных металлопокрытиями, определяются тремя главнейшими эксплуатационными свойствами прочностью связи (сцепления) покрытий с основным металлом, износостойкостью и усталостной прочностью. Все другие свойства покрытий твердость, пластичность, хрупкость, пористость, внутренние напряжения, определяемые структурой покрытий, по существу как бы поглощаются указанными эксплуатационными свойствами. От этих свойств и особенно от твердости, пластичности и хрупкости зависит износостойкость покрытий. Пористость и внутренние напряжения положительного знака (растягивающие) могут стать причиной снижения усталостной прочности восстановленной детали и т. д.  [c.245]

По-видимому, остаточные внутренние напряжения, возникающие при формировании покрытия, играют двоякую роль при возникновении и распространении усталостных трещин. Если в покрытии и приповерхностных слоях основного металла имеются сжимающие остаточные напряжения, то они увеличивают долговечность, задерживая зарождение и распространение усталостных трещин. При образовании напряжений растяжения (что происходит чаще), неблагоприятных с точки зрения конструктивной прочности, разрушение образца ускоряется вследствие усиления напряженности состояния и инициирования трещинообразования.  [c.31]


Прочность соединения покрытия с основным металлом зависит не только от характера связей между металлом и покрытием. Большое значение оказывает также уровень внутренних напряжений [8, 93].  [c.56]

При работе, например, деталей газовых турбин, двигателей внутреннего сгорания воздействие термоусталостных напряжений сопровождается газоабразивным изнашиванием, коррозионным разрушением поверхности. Одним из эффективных способов защиты поверхности от воздействия продуктов сгорания является нанесение специальных покрытий. Известно, что усталостные трещины (в том числе и термоусталостные) зарождаются обычно на поверхности изделия. Поэтому важно знать характер влияния покрытия на кинетику термоусталостного разрушения. Защищая основной металл от воздействия среды, т. е. увеличивая тем самым долговечность, покрытие может стеснять пластическую деформацию поверхностных слоев, способствовать возникновению и росту трещин, уменьшать надежность детали.  [c.128]

ВНУТРЕННИЕ НАПРЯЖЕНИЯ В ОСНОВНОМ МЕТАЛЛЕ И ПОКРЫТИЯХ  [c.185]

Возникновение внутренних напряжений в значительной степени связано с различием величин температурных коэффициентов линейного расширения основного металла, переходного слоя и покрытия. Экспериментальным и расчетным методами установлено, что  [c.44]

Сопротивление коррозии уменьшается с увеличением внутреннего механического напряжения из-за возросшей подверженности гальванического покрытия к разрушению по мере развития коррозии. При нарушении защитных свойств покрытия основной слой остается незащищенным. Внутреннее напряжение покрытия может быть вызвано степенью структурного несоответствия между основным металлом и ближайшими к нему атом-  [c.88]

Вследствие значительной разницы в скорости теплового расширения металлов и пластмасс температурные колебания вызывают сильные внутренние напряжения в месте соединения металла с пластмассой. Кроме того, прочность сцепления металлического покрытия и основного слоя пластмассы низкая, и возникающие тепловые напряжения могут привести к потере  [c.101]

Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде.  [c.109]

Тонкие декоративные осадки хрома обладают пористостью. Из-за внутренних напряжений и хрупкости осадков пористость нельзя устранить путем увеличения толщины осадка, так как произойдет мгновенное растрескивание. Несплошности покрытия позволяют коррозионной среде проникать сквозь покрытие и воздействовать на нижний слой металла. Поверхность хрома создает большую катодную площадь, вследствие чего на нижних (анодных) слоях металла происходит локализованная коррозия. По этой причине хром почти всегда используют с соответствующими подслоями покрытия, устойчивыми к действию коррозии (например, никелем). Исключение составляют изделия (в частности, предметы широкого потребления), требующие дешевой декоративной обработки и подвергающиеся при эксплуатации слабому коррозионному воздействию, а также изделия, которым твердое покрытие хромом обеспечивает необходимую им высокую сопротивляемость износу. Хотя в толстослойных осадках твердого хрома всегда содержатся трещины, попадание электролита на основной слой затруднено. Однако при эксплуатации изделий в более активной коррозионной среде (например, гидравлического оборудования, погружаемого в воду в шахте) защитные подслои могут быть необходимы.  [c.112]


Эксплуатация пластмасс, имеющих металлические покрытия, вызывает особые затруднения при наличии механических усилий. Основной причиной является нарушение связи между покрытием и основным слоем из-за внутренних напряжений, возникающих при изменении температуры, вследствие значительного различия коэффициентов линейного расширения металлов и пластмасс. Вероятно, использование пластичного нижнего покрытия (такого, как медь) достаточной толщины позволит предотвратить его отслоение вследствие разной степени расширения и сжатия металлов и пластмасс. Зафиксированы случаи, когда детали из пластмасс с никелевым и хромовым покрытиями разрушались под действием нагрузок в местах углубления или выступов с острыми углами, в то время как подобные пластмассовые детали, не имевшие покрытий, удовлетворительно выдерживали нагрузки. Поломки возникают в местах концентрации напрян<ений, вызывая разрушение хромового покрытия, после чего трещина распространяется на подслои металла и основной материал — пластмассу. В таких случаях приходилось производить замену деталей.  [c.130]

На прочность сцепления пленки к металлу оказывают влияние внутренние напряжения, возникающие в процессе формирования покрытий [17—19], и релаксационные процессы [20]. Для защиты металла от коррозии в лакокрасочный материал вводят специальные вещества, способные либо изменить кинетику электродных реакций, обусловливающих коррозионный процесс, либо его подавить. Такими веществами, в основном, являются пигменты.  [c.145]

Для элементов без антикоррозионной наплавки точку п располагают на наружной или внутренней поверхности изделия в зоне действия максимальных растягивающих напряжений. Для элементов с антикоррозионной наплавкой точку п выбирают на наружной поверхности изделия или на поверхности раздела антикоррозионного покрытия и основного металла в зоне действия растягивающих напряжений.  [c.119]

Рассмотрев методы ускоренных испытаний покрытий для выявления их защитной способности, необходимо отметить, что существует ряд свойств покрытий, которые в значительной степени определяют их качество. К таким свойствам относятся внутренние напряжения, сцепляемость покрытия с основным металлом, пористость и толщина покрытия.  [c.176]

Согласно данным [17] упрочнение монокристаллов с покрытием обусловлено не механической прочностью самой пленки, так как она не намного прочнее основного материала, а взаимодействием между пленкой и монокристаллом. Это взаимодействие заключается в том, что пленка препятствует движению дислокаций в металле, в результате чего создаются заторможенные их группы. Это приводит к возникновению внутреннего напряжения, которое должно возрастать с увеличением степени деформации до тех пор, пока заблокированные дислокации не пройдут через поверхностную пленку. Устойчивое состояние возникает тогда, когда скорость прохождения дислокаций через пленку становится равной скорости их перемещения внутри монокристалла к поверхности. В результате монокристаллы с покрытием упрочняются при более высоком напряжении, чем монокристаллы с чистой поверхностью.  [c.8]

Перечисленные выше мероприятия по предотвращению водородного расслоения металла обеспечивают и надежную защиту от сероводородного растрескивания. Вместе с тем существует ряд мероприятий, предотвращающих растрескивание стали, но не гарантирующих отсутствие расслоения в сероводородных средах. Однако, поскольку расслоение представляет собой значительно менее опасный вид разрушения, чем растрескивание, то положительное значение этих мероприятий очевидно. Основными такими мероприятиями являются 1) применение стали с ограниченным пределом прочности и снижение рабочих (используемых при прочностных расчетах) напряжений в металле 2) использование низколегированных сталей с повышенной стойкостью к сероводородному растрескиванию 3) термическая обработка элементов оборудования для снятия внутренних напряжений, возникших в процессе их изготовления 4) химико-технологическая обработка — нейтрализация среды. Кроме того, практика защиты от сероводородного растрескивания включает использование апробированных применительно к этому виду разрушения ингибиторов, стойких сплавов и защитных покрытий.  [c.98]

Среди рассмотренных в данной главе сплавов наибольший интерес представляет сплав Ni —Со [1, 2, 3]. При определенных условиях осаждения можно получить глянцевые осадки сплава Ni—Со, обладающие более высокой химической стойкостью, чем Ni или Со. Кроме того, отмечается, что в электролитах, содержащих кобальт, достигается сглаживающее действие , т. е. осадок получается более гладким, чем основной металл [И]. Повышенная твердость этих сплавов наряду с хорошим сопротивлением механическому износу и малыми внутренними напряжениями [31] позволила рекомендовать эти сплавы для использования в полиграфии с целью покрытия стереотипов, а также для получения твердых матриц для литья и прессования пластмассовых изделий.  [c.218]

Известно, что присутствие примеси железа в никелевой ванне резко понижает прочность сцепления покрытия с основным металлом. Это явление связывали с тем, что состав покрытия меняется по мере увеличения его толщины [72]. Различная величина внутренних напряжений, возникающих при этом в отдельных слоях осадка, и приводит к его растрескиванию и отслаиванию от основного металла. Это обстоятельство затрудняло получение железоникелевых осадков, пригодных для защиты деталей от коррозии. Затруднение представляла также неустойчивость электролитов, составленных из простых солей железа и никеля, ввиду большой склонности железа к окислению и образованию гидратов.  [c.228]


Покрытия имеют большие внутренние напряжения и при толщине более 25 мк отслаиваются от основного металла. Добавление в ванну  [c.230]

Покрытие, полученное из тетрахроматного электролита, имеет низкие внутренние напряжения и пониженную пористость, вследствие чего они могут применяться для защиты основного металла без подслоя меди и никеля.  [c.62]

В то время как под собственными напряжениями первого вида (собственные) понимаются такие внутренние напряжения, которые по причине возникновения и по величине не зависят от основного материала, т. е. которые сохраняются, когда такие покрытия как самостоятельное целое снимаются с основного материала, собственные напряжения второго вида (посторонние) являются результатом взаимодействия основного металла и гальванического покрытия. Эти собственные напряжения определяются прежде всего внутренними напряжениями, имеющимися или возникающими при предварительной обработке или во время процесса гальванического нанесения покрытий в основном материале или в зонах наружной его повер.кности.  [c.169]

Изменение числа перегибов до растрескивания покрытия характеризует хрупкость осадков, которая связана со структурой осадков. Осадки, полученные при 30 а/дм , более вязкие, чем осадки, полученные при 50 а/дм (рис. 9). Это, по-видимому, связано с наличием внутренних напряжений в осадках. У осадков хрома, полученных при 50° и плотности тока 50 а/дм , сила сцепления хрома с основным металлом значительно выше, чем прочность самого хрома, так как при изгибе происходит разрушение хрома.  [c.106]

Есть основания предполагать, что разработка мероприятий, обеспечивающих снижение величины внутренних напряжений в никель-фосфорных покрытиях и лучшую их сцепляемость с основным металлом позволит значительно повысить их способность противостоять воздействию циклических контактных нагрузок.  [c.73]

Особый интерес представляет исследование вопроса о влиянии кислотности ванны, толщины покрытия и режима термообработки на величину внутренних напряжений. Этот интерес вызывается тем, что термическая обработка никелированных деталей входит в технологический процесс как операция, направленная на увеличение прочности сцепления с основным металлом, повышение твердости, износостойкости, устранение водородной хрупкости и повышение коррозионной стойкости.  [c.118]

На рис. 11.1 [70, с. 336] показана связь предельной плотности тока со значением pH и температурой сульфатного электролита. Понижение pH и повышение температуры раствора позволяет увеличить предельную рабочую плотность тока. Однако при режиме, превышающем границу для данного значения pH в сторону большей кислотности, качество покрытий ухудшается. Кислотность оказывает заметное влияние на твердость и пластичность покрытий, что связано с сопутствующим процессу осаждения никеля разрядом ионов водорода. Водород, включающийся в осадок никеля в виде адсорбированных гидроксидов основных солей или молекул органических соединений, приводит к повышению внутренних напряжений, твердости и снижению пластичности металла, в то время как водород, оказывающийся в покрытии в молекулярной форме, не влияет на его механические свойства. Наибольшая концентрация сорбированного водорода выявлена в покрытиях малой толщины. Наряду с этим, в работе [114] указано, что водородная хрупкость никеля может быть связана и с молекулярным водородом, способным привести к разрушению по границам зерен. Наводороживание никеля 168  [c.168]

При всех работах с повышенным давлением или с сильным разрежением, с резко меняющимися температурами и с особыми механическими напряжениями покрытие однородным свинцом служит защитой от разъедания. Однородные (сплошные) освинцования характеризуются тем, что свинец в каждом отдельном месте крепко связывается с другими частицами свинца и имеет внутреннюю связь с лежащим под ним металлом такое освинцование осуществляется сплошной наплавкой свинца на поверхность, предварительно тщательно очищенную и в большинстве случаев покрытую тонкой полудой, или обработанную паяльными жидкостями, содержащими олово. Особенно хорошо принимают однородное (сплошное) освинцование сталь, стальное литье и медь. Однородное освинцование дает возможность соединять конструктивные преимущества основных металлов со стойкостью против разъедания, свойственной свинцу.  [c.1156]

Процесс нанесения никель-фосфорных покрытий путем химического восстановления, сопровождающийся выделением водорода, а также наличие внутренних напряжений в слое получаемого осадка, не может не сказываться на свойствах основного металла. Поэтому представляло несомненный интерес рассмотреть вопрос  [c.67]

В практике известны двухслойные и многослойные никелевые покрытия с дифференцированными электрохимическими характеристиками в различных слоях, что позволяет повысить коррозионную стойкость системы по сравнению с однослойными при одинаковой толщине слоя. Наиболее высокими защитными свойствами обладают двухслойные покрытия при соотношении толщин слоев 90 10 %. На практике используются покрытия с соотношениями слоев 70 30 и 60 40 %. Слой покрытия, примьпсающий непосредственно к основному металлу, должен отличаться высокой плотностью, низким уровнем внутренних напряжений и иметь потенциал поверхности более положительный, чем последующие слои.  [c.108]

При выборе покрытия и метода его получения для узла изделия, подвергаемого деформации во время обработки и эксплуатации, необходимо принимать во внимание такие факторы, как внутреннее напряжение, пластичность и хрупкость металлических покрытий (и иногда сплавов). Электроосаждаемые покрытия хромом и никелем могут выдержать только незначительную деформацию, не образуя трещин и не отслаиваясь. Чрезмерное утолщение слоев сплава при погружении в расплавленный металл также приводит к хрупкости покрытия и разрушению под действием деформации. Твердость, пластичность и антифрикционные свойства металлических покрытий имеют важное значение при дальнейшей обработке. Мягкое покрытие (так же, как свинец и в меньшей степени алюминий) деформируется под действием нагрузки, что обусловливает эффективное уничтожение некоторых трещин, но вызывает локализованное утоньшение покрытия или даже коррозию основного слоя. Нанесение цинкового или алюминиевого покрытия на сталь обеспечивает ей антифрикционные свойства, поскольку указанные покрытия имеют высокие коэффициенты скольжения 0,45— 0,55 для цинка и 0,7 для алюминия.  [c.128]

Гораздо лучше использовать листы наибольшего размера (массой до 50 т), что позволяет избежать нахлестовых или крестообразных швов. Все листы необходимо контролировать неразрушающими методами, чтобы выявить продольные дефекты и избежать проведения испытаний образцов, вырезаемых из толщи листа. Сварка является наиболее ответственной операцией и выполняется или ручным дуговым способом, или с помощью автоматов с применением соответствующих электродов и основных без-водородистых флюсов. Не рекомендуется делать сразу корневые швы. Например, когда кромки сферической крышки сваривают вручную, может наблюдаться коробление и смещение кромок, в результате чего образуются выступы. В этом случае сварщик вынужден заполнять появившиеся полости серией швов как с одной, так и с другой стороны листа. Поэтому отдельные листы собирают и прихватывают вместе сваркой с использованием специальных прокладок процесс начинают с этих подготовленных участков с наружной стороны, а затем переходят на внутреннюю. Избыточный металл сварного шва позднее удаляют механическим стюсобом. Сложные, на всю толщину корпуса, сварные шйы делают для приварки патрубков, которые изготавливают из отдельных поковок. В настоящее время используют заранее подготовленные секции с вваренными патрубками. В этом случае сварные швы легче подвергнуть термической обработке для снятия внутренних напряжений. Все сварные швы накладывают параллельно кромке, что позволяет обеспечивать достаточное пространство для передвижения электрода. Неразрушающему контролю подвергают все сварные швы (100%) до и посл снятия остаточных напряжений. Вся внутренняя поверхность корпуса реактора PWR и нижние части реактора BWR, которые подвергаются воздействию воды, имеют покрытие из аустенитной стали. Внутренняя поверхность патрубков также имеет аустенитное покрытие, которое выходит на наружную поверхность патрубков, чтобы обеспечить соединение их с трубами из аустенитных сталей.  [c.165]


На эксплуатационные свойства металлизационных покрытий влияют внутренние напряжения, возникающие в частицах при их охлаждении и усадке, а также из-за разницы в значениях КЛТР металла покрытия, содержащихся в нем неметаллических включений и металла подложки. Степень и характер влияния внутренних напряжений на прочность сцепления покрытия с поверхностью зависят от конфигурации защищаемого изделия. На замкнутых наружных поверхностях цилиндров прочность сцепления за счет внутренних напряжений повышается, а на плоских незамкнутых поверхностях фасонных изделий и внутренних поверхностях цилиндров они, наоборот, приводят к отрыву покрытия от основного металла.  [c.43]

Из таблицы видно, что основной причиной образования напряженных покрытий сплавов Ре—N1—Сг является присутствие водорода, содержание которого находится в прямой зависимости от содержания в сплаве хрома. С целью снижения наводоро-живания осадков и соответственно уменьшения внутренних напряжений проводили электроосаждение сплавов Ре—N1—Сг в ультразвуковом поле [9, 10]. Для наложения ультразвукового поля за основу была принята схема, описанная в работе [И]-Интенсивность ультразвукового поля в ванне составляла 0,4— 0,6 вт1см , частота — 19,0 кгц. Установлено, что сплавы, содержащие 18—20% Сг и 8—9% N1, не имеют на своей поверхности сетки микротрещин до толщины 18 мк, тогда как в покрытиях того же состава, полученных без наложения ультразвука, сетка трещин возникает уже при толщине 3,0—3,5 мк. Микротвердость покрытий типа 18-9, полученных в ультразвуковом поле, имеет также более низкое значение (330—350 кг1мм ), чем без наложения ультразвука. Сравнительное определение водорода показало, что при электролизе в ультразвуковом поле содержание водорода в сплавах Ре—N1—Сг уменьшается примерно в 1,4 раза. Уменьшение наводороживания и соответственно снижение микротвердости и внутренних напряжений в сплавах Ре—N1—Сг, вероятно, вызвано более интенсивным отводом от катодной поверхности водорода и гидроокиси металлов в ультразвуковом поле, что снижает включения в осадке.  [c.30]

Осаждение на катоде электроотрицательных металлов цинка, железа, никеля, кобальта, хрома из растворов простых солей сопровождается выделением водорода даже при небольшой концентрации его ионов в растворе. Выделяющийся водород легко проникает как в металл покрытия, так и в металл основы. Как правило, при этом повышаются внутренние напряжения в осадке, появляются пузыри, вздутия, возможно растрескивание покрытия. Наводоро-живание металла (насыщение водородом) особенно опасно для тонкостенных изделий, пружин и деталей из высокоуглеродистых сталей. При совместном выделении водорода с металлом выход металла по току снижается, и тем в большей степени, чем ниже pH раствора (выше кислотность). При повышении pH (снижение кислотности) и достижении значения pH, при котором в электролите образуются малорастворимые гидроксиды и основные соли металла, качество покрытия снижается. Накапливаясь в растворе, эти вещества могут попадать в покрытие, загрязняя его, повышать внутренние напряжения, вызывать шероховатость. Одновременно концентрация соли осаждаемого металла уменьшается, поэтому предел допустимой плотности тока снижается. Таким образом, в растворе необходимо поддерживать оптимальную для данных условий концентрацию водородных ионов. Для этой цели в электролит вводят специальные буферирующие добавки. Буферное действие уксусной кислоты может быть выражено следующими  [c.119]

Рауб [8] отрицает возможность существования непосредственной зависимости между твердостью и износостойкостью хромовых осадков, считая, что, помимо твердости, существенное влияние на износостойкость могут оказывать такие факторы, как хрупкость осадков и прочность их сцепления с основным металлом. Если повышение твердости осадков будет сопровождаться возрастанием хрупкости и ослаблением сцепления с основным металлом (например, за счет возрастания внутренних напряжений осадка при изменениях режима хромирования), то износостойкость такого покрытия будет сильно уменьшаться. По Раубу, твердость осадка еще и потому не может характеризовать износостойкость в процессе эксплуатации покрытия, что при износе трущейся детали большое  [c.78]

Картина резко изменилась после того, как никелированные образцы были подвергнуты термической обработке при 400°. В этом случае предел выносливости образцов снизился на 46%. Такое существенное снижение предела выносливости образцов после термической обработки может быть объяснено тем, что при нагреве сильно возросла прочность сцепления покрытия с основным металлом. С другой стороны, структура самого покрытия претерпела существенные изменения в осадке образовались твердая и хрупкая фаза — химическое соединение N 3 , значительно возросла твердость покрытия и, кроме того, в нем действуют довольно высокие растягивающие внутренние напряжения. Все это вместе взятое и оказало большое влияние на усталостную прочность испытывавщихся образцов.  [c.99]

Электролиты на основе аминохлоридного комплекса различаются главным образом по концентрации основного компонента, причем увеличение ее так же, как понижение плотности тока, приводит к повышению выхода металла по току (рис. 12.1). Внутренние напряжения в покрытии увеличиваются с ростом его толщины, концентрации в растворе палладия и катодной плотности тока. Рассеивающая способность аминохлоридных электролитов ниже, чем фосфатных.  [c.185]


Смотреть страницы где упоминается термин Внутренние напряжения в основном металле н покрытиях : [c.89]    [c.148]    [c.115]    [c.426]    [c.303]    [c.132]    [c.145]    [c.159]    [c.172]    [c.401]    [c.193]    [c.72]   
Смотреть главы в:

Исследование структуры и физико-механических свойств покрытий  -> Внутренние напряжения в основном металле н покрытиях



ПОИСК



Внутренние напряжения

Напряжения в металле

Покрытия металлами



© 2025 Mash-xxl.info Реклама на сайте