Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водород молекулярный

Меньшая химическая активность водорода (молекулярного) по сравнению со щелочными металлами объясняется образованием молекулы На с большим выделением тепла атомарный водород очень активен.  [c.65]

Ингибирование, виды 51 Ингибирование, влияние водорода молекулярного 57 кислорода 53 структуры стали 70 Ингибирования механизмы 27, 52 Ингибированные растворы, составы 108, 109  [c.173]


Водород, молекулярный состав в зависимости от температуры и давления 241—243  [c.543]

Виды кипения 102—105 Водород нормальный 69, 70 Водорода молекулярные спектры 69 Время пребывания молекулы на поверхности 233  [c.381]

Для определения, в какой форме водород (молекулярный или атомарный) является ответственным за появление дефекта рыбья чешуя при эмалировании стали, автором был рассчитан коэ( )фициент ди( )фузии водорода прн / — 20° С.  [c.89]

Структура кристаллического водорода — молекулярная. Уклонение от идеально-металлической структуры сказывается в образовании молекул Нг. (Прим. ред.)  [c.451]

Накопление диффузионно-подвижного, а также молекулярного водорода в несплошностях отрицательно сказывается на сопротивляемости стали разрушениям и способствует образованию трещин — отколов по зоне сплавления.  [c.248]

Водород поглощается сталью н атомарном состоянии. При охлаждении сплава растворимость водорода уменьшается, и в молекулярной форме он накапливается с микропорах под высоким давлением, Таким образом, водород может стать причиной образования внутренних надрывов в металле (флокенов).  [c.14]

Главными причинами катодной поляризации, т. е. отставания процесса ассимиляции электронов от поступления их на катодные участки, являются а) замедленность катодной реакции, которая приводит к возникновению перенапряжения водорода-, б) концентрационная поляризация по молекулярному водороду вследствие замедленности процесса отвода образующегося молекулярного водорода с поверхности металла, которая наблюдается до насыщения при-электродного слоя электролита водородом, когда становится возможным выделение его в виде пузырьков, в которых рнг = 1 атм.  [c.251]

Поляризацию вследствие замедленной диффузии молекулярного водорода от катодных участков в глубь раствора можно назвать газовой концентрационной поляризацией, а ее значение можно определить по уравнению  [c.259]

Приведенные выше уравнения (6.3), (6.14) и (6.18) для компонентов характеризуют компоненты смеси как взаимодействующие сплошные среды и применимы непосредственно к смесям различных молекулярных масс (таким, как смесь водорода с урановым газом). Поведение отдельных частиц в смеси не рассматри-  [c.273]

Взаимодействие металла с газами. При дуговой сварке газовая фаза зоны дуги, контактирующая с расплавленным металлом, состоит из смеси N4, О2, На, СОа, СО, паров НаО, а также продуктов их диссоциации и паров металла и шлака. Азот попадает в зону сварки главным образом из воздуха. Источниками кислорода и водорода являются воздух, сварочные материалы (электродные покрытия, флюсы, защитные газы и т. п.), а также окислы, пов рх-ностная влага и другие загрязнения на поверхности основного и присадочного металла. Наконец, кислород, водород и азот могут содержаться в избыточном количестве в переплавляемом металле. В зоне высоких температур происходит распад молекул газа на атомы (диссоциация). Молекулярный кислород, азот-и водород распадаются и переходят в атомарное состояние 0а5 20, Ыа 2 2Н, Н2 2Н. Активность газов в атомарном состоянии резко повышается.  [c.26]


Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]

Следовательно, большее количество водорода выделяется в молекулярном виде и меньше Наде способно проникать в металл, в противоположность действию каталитических ядов, замедляющих эту реакцию.  [c.149]

Любые факторы, снижающие растворение водорода в стали, повышают ее устойчивость к растрескиванию. Таковы, например, сплавление с небольшими количествами платины или палладия, которые катализируют образование молекулярного водорода на поверхности стали, или с медью, образующей нерастворимую сульфидную пленку [62]. Аналогично действует любой тип обработки стали, делающий включения более округлыми — в частности, прокатка при повышенных температурах снижает склонность к растрескиванию.  [c.153]

Все формы водорода находятся в термодинамическом равновесии, зависящем от температуры. При повышении температуры свыше определенного уровня начинается заметный переход одних его форм в другие растворимый неравновесный — в равновесный, связанный в ловушках — в растворимый, молекулярный — в атомарный.  [c.533]

Обычно вместо массы атома водорода используют обратную ей величину, которую называют числом Авогадро N 1 - 6,02 10 г Тогда, чтобы найти массу других атомов или молекул, нужно разделить их относительную атомную или молекулярную массу на число Авогадро. А число молекул N (или атомов, если вещество состоит не из молекул, а из атомов), содержащихся в М граммах вещества, выражается через число Авогадро так N = (М/р)ЛГд. Отсюда видно, что ЛАд есть число частиц, содержащихся в одном моле, т.е. в количестве вещества, масса которого М (в граммах —поскольку число Авогадро имеет размерность г Ъ численно равна его относительной молекулярной массе ц.  [c.34]

При выборе компонентом В молекул Вг (например, молекулярного водорода и молекулярного кислорода в смеси Нг, О2, Н2О) вместо (16.32) будет  [c.145]

Следует заметить, что идеальная фаза должна иметь определенный и фиксированный в некотором интервале изменения переменных химический состав. Например, идеальность газообразного водорода при нормальных условиях означает, что он состоит из двухатомных молекул, так как молекулярная масса однозначно следует из уравнения состояния (10.7). При низких давлениях и высоких температурах, когда нельзя пренебрегать диссоциацией молекул Нг, водород не является идеальным газом, хотя свойства и атомов Н и молекул Нг в отдельности, при отсутствии химической реакции между ними, должны, очевидно, хорошо описываться уравнениями для идеальных газов. Равновесная смесь химически реагирующих веществ не может, следовательно, быть идеальной, и расчет химических равновесий между составляющими — один из способов учета ее не-идеальности. Это видно также на примере соотношений (16.31) — (16.33), которые позволяют находить активности веществ в растворах по данным о молекулярном составе насыщенного пара, пользуясь уравнениями для идеальных растворов, хотя ассоциированный пар не является идеальной системой.  [c.170]


Необходимым условием активного протекания коррозии в сероводородсодержащих средах является наличие влаги, в которой сероводород находится в диссоциированном состоянии. В этом случае имеет место электрохимическая коррозия, катодный процесс протекает с водородной деполяризацией, в результате чего в системе образуются атомарный и молекулярный водород. При относительно малой влажности (4-26%) сероводород оказывает незначительное влияние на углеродистую сталь, вызывая, например, в течение 30 суток лишь потускнение ее поверхности. Наличие капельной влаги усиливает сероводородную коррозию сталей примерно в 100 раз по сравнению с атмос([)ерой сухого газа [13].  [c.14]

Установлено [17], что значения твердости поверхности железа в процессе наводороживания достигают максимума, а затем уменьшаются. Это связывают с тем, что молекулярный водород сначала деформирует кристаллическую решетку металла в местах прилегания к поверхности микропустот, заполненных водородом, в результате чего твердость повышается, а затем в процессе дальнейшего наводороживания вызывает растрескивание и разрыхление поверхности, которое приводит к снижению твердости.  [c.15]

При содержании в стали водорода более 10-15 мл/100 г возможно образование флокенов, расслоений и водородных трещин в результате суммарного воздействия молекулярного водорода, находящегося в порах под давлением, и существующих в металле растягивающих напряжений. Рост образовавшихся трещин при наводороживании стали происходит после снижения пластичности металла до определенной минимальной величины [11, 12].  [c.16]

Поскольку проведение теоретического расчета и непосредственного контроля давления молекулярного водорода внутри расслоения является достаточно сложной задачей, прогнозирование развития изолированных расслоений или областей взаимодействующих расслоений осуществляют на основе результатов периодического УЗК изменения их размеров в процессе эксплуатации трубопроводов. Например, при неизменных условиях эксплуатации трубопроводов и оборудования ОНГКМ увеличение линейных размеров устойчиво развивающихся водородных расслоений достигает 3-5 мм в год [25].  [c.130]

Формула (70.7) не дает возможности определить знак параметра рассеяния для синглетного состояния. Поэтому без дополнительного анализа нельзя установить, является синглетное состояние связанным или нет. Ответ на этот вопрос был получен в результате рассмотрения опытов по рассеянию нейтронов на молекулярном водороде.  [c.504]

Известно, что молекулярный водород в нормальном состоянии состоит из молекул двух типов с параллельно (ортоводород) и антипараллельно (параводород) направленными спинами обоих протонов молекулы.  [c.504]

Борирование тугоплавких металлов из чистой парогазовой фазы проводят обычно с использованием в качестве транспортеров бора его галогенидов [225—228]. Процесс борирования ниобия в смеси ВС1з -Ь Нз в интервале температур 1700—1200" С, а также влияние добавок к ней азота и аммиака изучены в работе [225]. Схема установки, позволяющей использовать в качестве несущего газа водород, молекулярный азот и аммиак, представлена на рис. 75. Образцы крепят на подвеске из молибденовой проволоки (подвески из нихрома, платины и кварца разрушались при взаимодействии с ВС1д и НС1) и помещают в фарфоровую трубу, находящуюся в электропечи.  [c.200]

Влияние азота, кислорода и водорода. Эти элементы присутствуют в сплавах или в составе хрупких неметаллических включений, например оксидов РеО, SiOj, Al. O ,, нитридов Fe4N, или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Неметаллические включения служат концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).  [c.14]

В процессе изготовления ламп во время отпайки оболочки освобождается некоторое количество водяного пара и этот пар будет добавляться к тому небольщому количеству, которое остается после дегазации стекла в процессе длительного отжига. Чистая стеклянная поверхность сильно адсорбирует атомарный водород, однако количество водорода, адсорбированного до того, как стекло начинает освобождать его в виде молекулярного водорода, очень невелико. Тем не менее, несмотря на образующийся при отпайке водяной пар, создавать стабильные лампы возможно, и представляется вероятным, что для са-моподдерживающегося водяного цикла требуется некое определенное минимальное количество водяного пара.  [c.354]

Другой механизм может быть обусловлен развитием водородного растрескивания вдоль границ зерен сенсибилизированного сплава. Разрушение в этом случае протекает в кислой среде, так как она поставляет водород, необходимый для коррозионного процесса. Кислая среда способствует также образованию молекулярной формы HjS (а не HS или S "), которая является основной каталитической примесью, стимулирующей абсорбцию сплавом атомарного водорода. Показано, что водные растворы SO2 так же, как и растворы политионовых кислот, вызывают межкристаллит-ное растрескивание сенсибилизированной стали 18-8. Это объясняется быстрым восстановлением SOj на катодных участках с образованием HjS или других аналогично действующих продуктов восстановления. Ионы SO не способны к такому восстановлению, поэтому серная кислота вызывает растрескивание в значительно меньшей степени.  [c.323]

Водород, содержащийся в основном металле, может находиться в состоянии твердого раствора внедрения — диффузионно-подвижный водород, а также находиться в связанном состоянии — гидридный водород. Водород в молекулярном состоянии находится в микронесплошностях металла.  [c.403]

Флокены - это несплошности типа трещин. Считается, что чаще всего образованию флокенов способствует бьютрое охлаждение стали, содержащей водород, в диапазоне температур от 200 до 20°С, при этом водород, выделяясь из раствора и переходя из атомарной формы в молекулярную, создает большие внутренние напряжения, приводящие к образованию трещин. Наиболее часто флокены встречаются в хромоникелевой стали.  [c.303]

Образование молекулярного водорода на поверхности стенки оборудования затруднено, так как ион серы (1.6)выступает в роли эшв,п 1тели процесса молиэадии (так называемый огпииательный катализатор).  [c.13]


Сульфатвосстаыавливающиёся аэробные бактерии (СВБ) в процессе своей жизнедеятельности способствуют превращению сульфатов и судь-([итов (в том или ином количестве всегда присутствуют в грунтах) в сероводород, окисляя молекулярный водород (всегда присутствует п аластоввх водах иди образуется при катодной реакции деполяризации в кислых средах) по реакции  [c.14]

Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в больщинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости пе восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали.  [c.16]

В случае неингибированной среды NA E величины критериев соответствуют расчетным данным теории замедленной рекомбинации, то есть происходит активный разряд ионов водорода на поверхности металла, приводящий к его наводорожива-нию и последующему водородному охрупчиванию. При введении в коррозионную среду соединений КСФ1-КСФ5 значения критериев приближаются к расчетным данным теории замедленного разряда, что свидетельствует о преобладании молекулярного водорода у поверхности металла и его удалении из среды.  [c.273]

Айвс и Стилуэлл (Opt. So . Am., 1938, у, 28, p. 215 1941, v. 31,. p. 369) выполнили спектральные опыты с пучками водородных атомов, находившихся в возбужденных электронных состояниях. Атомы, входившие в состав молекулярных водородных ионов-и Н+, ускорялись в сильном электрическом поле. Как продукт распада ионов образовывался атомарный водород. Скорость его атомов имела порядок р = 0,005. Айвс и Стилуэлл определяли смещение средней длины волны отдельной спектральной линии, испускаемой атомами водорода. Среднее значение бралось по направлениям вперед (в) и назад (н) относительно траектории полета атомов. Из (42) получаем, считая Рв = —Рн, что средняя длина волны  [c.360]


Смотреть страницы где упоминается термин Водород молекулярный : [c.32]    [c.445]    [c.248]    [c.127]    [c.256]    [c.258]    [c.259]    [c.64]    [c.348]    [c.533]    [c.33]    [c.146]    [c.15]    [c.126]    [c.150]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.84 , c.85 ]



ПОИСК



Водород

Водород молекулярный, вязкость газа

Водород, молекулярный состав в зависимости от температуры и давления

Водорода молекулярные спектры

Ингибирование, влияние водорода молекулярного

Молекулярные постоянные пятиатомных молекул, не содержащих водорода, в различных электронных состояниях

Молекулярные постоянные трехатомных молекул, не содержащих атомов водорода, в различных электронных состояниях

Молекулярные постоянные четырехатомных молекул, не содержащих атомов водорода, в различных электронных состояниях

Молекулярные постоянные шестиатомных молекул, не содержащих атомов водорода, в различных электронных состояниях

Молекулярный вес

О роли молекулярного водорода в процессе ингибирования кислотной коррозии

Торможение молекулярным водородом



© 2025 Mash-xxl.info Реклама на сайте