Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водородная хрупкость

При большой затрудненности реакции рекомбинации водородных атомов (528) и электрохимической десорбции (529) увеличивается возможность растворения Нзд,. в металле и последующей диффузии водорода в глубь металла (см. рис. 174), что часто приводит к появлению водородной хрупкости металла.  [c.259]

Медь и богатые медью сплавы также подвержены водородной коррозии или так называемой водородной хрупкости. Явление водородной хрупкости меди связано с восстановлением содержащихся в ней и распределенных по границам зерен включений закиси меди. Последняя при взаимодействии с водородом восстанавливается до металлической по реакции  [c.152]


Медь подвергается сильной коррозии и при действии газовых сред — хлор, бром, йод, пары серы, сероводород, углекислота разрушают медь. В особенности интенсивная коррозия меди имеет место при действии на нее водорода при высоких температурах. Этот вид разрушения известен под названием водородной болезни . Технические марки меди всегда загрязнены примесью закиси меди, которая при взаимодействии с водородом восстанавливается до металлической с образованием паров воды. Образующиеся при указанной реакции пары воды стремятся выделиться и нарушают связь между отдельными кристаллитами металла, вследствие чего медь становится хрупкой, дает трещины и не выдерживает динамических нагрузок. С повышением температуры водородная хрупкость меди увеличивается (рис. 174).  [c.249]

Серусодержащие соединения, являясь эффективными ингибиторами, иногда вызывают водородную хрупкость стали. Это является следствием того, что сами эти вещества или образующиеся продукты их гидролиза (например, HaS) могут способствовать внедрению в металл атомов водорода (см. разд. 4.5). Такое же действие могут оказывать соединения, содержащие мышьяк и фосфор.  [c.271]

Водорода, как правило, по возможности избегают в металлургических процессах при сварке металлов, так как, растворяясь в металлах при температурах сварки, он может привести к возникновению дефектов сварного соединения (поры, трещины) в процессе кристаллизации. Кроме того, растворяясь в твердом металле, водород резко снижает его пластичность (водородная хрупкость). Однако в некоторых процессах сварки (атомно-водородная, сварка в перегретом паре и газопламенная сварка) используется восстановительная способность водорода.  [c.342]

Растворенный водород также оказывается нежелательным, так как он резко уменьшает пластичность металлов (стали, медные и алюминиевые сплавы), вызывает пористость в сварных швах и в зоне термического влияния. Так называемая водородная хрупкость металлов- в настоящее время стала важной технической и научной проблемой, так как применение упрочненных сталей, обладающих малым запасом пластичности б, вызывает замедленное разрушение сварных конструкций.  [c.347]

Общей теории водородной хрупкости, достаточно обоснованной, пока еще не существует, потому что водород (точнее протон) в твердых металлах ни одним из известных экспериментальных методов не обнаруживается.  [c.348]


Водород при сварке—всегда вредная примесь ( водородная хрупкость ).  [c.403]

Хрупкое разрушение не сопровождается заметной пластической макродеформацией и происходит при действии средних напряжений, не превышающих предела текучести. Траектория разрушения близка к прямолинейной, излом нормален к поверхности и имеет кристаллический характер (рис. 13.38, в). Хрупкое разрушение, как правило, внутрикристаллическое. Разрушение происходит под действием нормальных напряжений и распространяется вдоль наименее упакованной кристаллографической плоскости, называемой плоскостью скола (отрыва). При некоторых условиях хрупкое разрушение бывает межкристаллитным (например, при водородной хрупкости). Хрупкое разрушение.  [c.544]

Металл подгруппы VA (V, Nb, Та) активно взаимодействует с водородом. Процесс поглощения водорода начинается при температурах 300 - 500°С. Сплавы, содержащие водород, выше определенной для каждого сплава концентрации, становятся хрупкими (водородная хрупкость).  [c.94]

Однако следует отметить, что термическая обработка не полностью устраняет водородную хрупкость металлов.  [c.105]

Изложенные выше данные позволяют достаточно точно и подробно оценить условия образования трещины при коррозионном растрескивании. Вместе с тем эти факторы еще не полностью раскрывают природу развития трещины. При анализе ее развития следует обращать внимание на особенности вида излома. Поверхность излома коррозионного растрескивания всегда темная, похожая на поверхность излома замедленного разрушения псевдо-а-титановых сплавов, имеющих повышенное содержание водорода. Как известно, в таких сплавах под действием напряжений или в результате пластических деформаций может происходить в определенном временном интервале распад пересыщенной водородом а-фазы с выделением мелкодисперсных гидридов (необратимая водородная хрупкость II рода). Темный цвет поверхности излома, видимо, связан в этом случае также с наличием на поверхности излома гидридов  [c.63]

Продолжительность инкубационного периода связана с временем, необходимым для образования оксидных пленок критической толщины. Термоциклирование, связанное со снижением температуры до 20°С, приводит к появлению низкотемпературных пленок в местах дефектов, а также к обратимости водородной хрупкости. Рост оксидных пленок в концентраторах напряжений способствует возникновению в пленках контактных напряжений сжатия, исключающих появление трещин.  [c.77]

Наряду с электрохимическими процессами, управляющими межкристаллитной коррозией, существенную роль в развитии ее играет выделяющийся на катодных участках водород. Нет никакого сомнения в том, что он, легко диффундируя в толщу металла, выполняет роль пособника процесса образования межкристаллит-ных трещин в металле паровых котлов, образуя различные газообразные продукты при реакции с углеродом, сульфидами и другими загрязнениями стали, развивая тем самым дополнительные разрывные усилия и способствуя разрыхлению структуры, углублению, расширению и разветвлению трещин. В отличие от водорода эти газообразные продукты плохо диффундируют в металл. Однако из изложенного видно, что водород, хотя и играет существенную роль в развитии межкристаллитной коррозии, является основным агентом, вызывающим это явление. Именно щелочь прокладывает путь протеканию процесса водородной хрупкости. Дальнейшее развитие трещин сильно облегчается из-за появления местной концентрации напряжений.  [c.8]

МЕТОДЫ ОЦЕНКИ ВОДОРОДНОЙ ХРУПКОСТИ  [c.53]

Описаны современные методы наводороживания и водородной хрупкости сталей при осаждении гальванических покрытий. Обобщены представления о механизмах процесса абсорбции водорода катодной основой при формировании электролитического осадка. Дан детальный анализ методов снижения и устранения наводороживания и водородной хрупкости сталей при гальванической обработке. Приведены практические рекомендации по контролю процесса наводороживания и водородной хрупкости высокопрочных и пружинных сталей.  [c.318]

Рис. 174. Зависимость глу(5ины распространения водородной хрупкости меди в атмосфере водорода от времени Рис. 174. Зависимость глу(5ины распространения <a href="/info/235576">водородной хрупкости меди</a> в атмосфере водорода от времени

При высоких температурах на никель оказывает коррозионное действие водяной пар. В атмосфере водорода никель подвержен водородной хрупкости . Возникновение се связано с диффузией водорода в никель, адсорбцией его по границам зерен и образованием малоустойчивых гидридов. Хлор и хлоро-водород при высоких тсмпература.х на никель не действуют.  [c.257]

При температурах выше 500 С титан и его сплавы легко окисляются и поглощают водород, который выз11шает охрупчиванпе (водородная хрупкость). Технический титан хорошо обрабатывается под давлением, сваривается (в среде аргона), но обработка резанпем затруднена. Поставляют титан в виде листов, труб, прутков, поковок, штамповок и других полуфабрикатов.  [c.314]

Электроды группы Ц с органическим покрытием содержат в своем составе до 50% органических веществ (пищевая мука, целлюлоза) и при их разложении и окислении выделяется большое количество газа, обеспечивающего хорошую защиту от воздушной среды. Для предотвращения водородной хрупкости или появления пор при сварке надо вводить окислители ТЮг, FeO, Мп02. Для уменьшения влияния водорода в покрытия вводят также плавиковый шпат Сар2. Надежная газовая защи-  [c.395]

Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в больщинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости пе восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали.  [c.16]

Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 1СВ по АЗТМ и в зоне разрушения находился в охрупченном состоянии ударная вязкость КСУ 4д при пониженной температуре составляла 12 Дж/см , относительное удлинение 8 — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса.  [c.52]

Водород. С железом гидридов не образует. Поглощенный при выплавке водород не только охрупчивает стать, но приводит к образованию флоке-нов- тонких трещин овальной или округлой формы. Кроме того, водород в. метат.т может попасть в процессе нанесения гальванических покрытий, сварки, при контакте с водородсодержащими средами. Для снижения водородной хрупкости (удаления водорода) метагт нагревается до 150. 180 "С, жела-  [c.81]

Уменьшить водородную хрупкость стали при нанесении покрытий можно снижением наводороживания в процессе осаждения и использованием методов разводороживания, связанных с обратимостью водородной хрупкости. Снижение наводороживания в процессе нанесения покрытий достигают введением непосредственно в электролит ингибиторов наводороживания, выбором составов электролитов и режимов осаждения, которые обеспечивают снижение интенсивности разряда водорода при катодном процессе нанесением барьерного подслоя из других металлов.  [c.104]

Наиболее распространенные методы борьбы с водородной хрупкостью - это методы, основанные на обратимости наводороживания, т.е. восстановления механических свойств стали после десорбции водорода, например, в процессе вылеживания или нагрева. Однако не всегда удается получить положительные результаты. Так, разводорожива-ние стали с кадмиевым покрытием не достигается за 24 ч обработки при температуре 423 К, при температуре 673 К из хромового покрытия выделяется всего 84 % водорода.  [c.104]

В процессе удаления водорода из покрытия возможно появление растягивающих напряжений растяжения, что вызывает появление сетки трещин. Обратимый характер водородной хрупкости наблюдается при содержании Hj до 0,5 см /100 г. При содержании его выше 5-8 см / 100 г J o6eHHo высокопрочные стали приобретают тенденцию к необратимой хрупкости. Появление необратимой хрупкости связано с накоплением молекулярного водорода в дефектах кристаллической решетки  [c.104]


Восстановленные атомы водорода частично рекомбинируют, а частично диффундируют в металл, вызывая водородную хрупкость. Сульфиды железа, образующиеся в результате коррозии железа в сероводородсодержащих средах, имеют различное строение в зависимости от условий их образования и оказывают различное влияние на скорость коррозии. Так, при низких концентрациях сероводорода (до 2 мг/л) сульфидная пленка состоит главным образом из трои-лита FeS и пирита FeSj с размерами кристаллов до 20 нм, образующих довольно плотную пленку и оказывающих некоторое защитное действие от коррозии. При концентрациях сероводорода от 2 до 20 мг/л дополнительно появляется небольшое количество кансита FegSj. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит, размеры кристаллов увеличиваются до 75 нм, кристаллическая решетка несовершенна, не препятствует диффузии сероводорода и поэтому не обладает защитными свойствами.  [c.21]

Выполненные в последние годы исследования по водородной хрупкости (а-ь/З) юплавов, в частности сплава Т1—6 % А1—4 % V, убедительно свидетельствуют о том, что в вершине трещины при нагружении происходит выделение гидридов вследствие диффузии к этим местам водорода. Расчеты показали, что скорости диффузии водорода и образования гидридов близки к скорости роста трещинь [ 68, 69]. Гидриды обнаружены в вершине трещины замедленного разрушения при исследовании фольг сплава Т1 — 6 % А1 — 4 % V на электронном микроскопе. Таким образом, диффузия водорода к вершине трещины и образование в подповерхностных слоях гидридов при коррозионном растрескивании не вызывают сомнений.  [c.64]

В рассматриваемых реакциях вследствие пирогидролиза хлористого титана происходит образование соляной кислоты, которая поддерживает в активном состоянии поверхность титана в местах разрушения окисной пленки, способствует процессам локального растворения и насыщения металла водородом. Чем больше химическая гетерогенность металла, тем более интенсивно протекают процессы локального растворения и тем активнее происходит насыщение металла водородом. При этом следует иметь в виду, что склонность к водородной хрупкости при нагружении металла в области температур 250—500°С существенно отличается от хрупкости при 20°С. При температурах горячесолёвого растрескивания выделения гидридов, по-видимому, не происходит из-за очень высокой растворимости водорода в металле, и сами гидриды не могут проявить хрупкость при данных температурах. Водородная хрупкость в этом интервале температур возможна лишь при сравнительно высоких концентрациях водорода как обратимая водородная хрупкость, связанная с повышенной концентрацией водорода на границах зерен. Эта концентрация способствует возникновению локального вязкого течения и соответственно охрупчиванию металла.  [c.77]

Область влияния коррозии, водородной хрупкости, межзерен-ное разрушение  [c.297]

В работе [96] рассматривается влияние выдержки как комбинация водородной хрупкости и ползучести, но ползучесть проявляется при нагреве, а в этой работе при выдержке с нагревом до 425 К увеличения СРТ не получено, поэтому и с ползз е-стью явление увеличения СРТ при выдержке под нагрузкой связывать однозначно нельзя.  [c.368]

В присутствии ингибиторов улучшаются физико-механические свойства металлов, уменьшается количество шлама, загрязняющего поверхность, наблюдается уменьшение ее шероховатости и выравнивание микрорельефа, резко снижается новодороживание металла. В результате этого уменьшается количество брака и непроизводительный расход металла и энергии при последующих процессах обработки металла — холодной прокатке, нанесения гальванических лакокрасочных покрытий, при горячем цинковании и т. д. [52 109 127]. Появляется возможность снятия окалины со сталей (например, электротехнические стали ЭО, 300, ЭО, 400), для которых процесс кислотного травления без ингибитора совершенно неприемлем из-за неравномерного растворения поверхности металла [131]. Существенно снижается водородная хрупкость и повышается сопротивление металлов коррозионной усталости [24 39 52 58].  [c.82]

Кудрявцеве. Н., ПеданК-С. Наводороживание и водородная хрупкость сталей при осаждении гальванических покрытий. — 15 л. — 3 р.  [c.318]

В большинстве случаев зона излома, соответствующая стадии медленного распространения треш,ины, имеет тем более хрупкий характер, чем больше долговечность образца. Например, образцы стали Н17К12М5Т, изготовленные из металла разных плавок, но с практически одинаковыми механическими свойствами при кратковременных испытаниях, показали разброс по долговечности при испытаниях на КПН при а =1,50 ГН/м2 от 2,5 до 8 сут. В образцах с большей долговечностью в зоне КПН наблюдалось хрупкое межзеренное разрушение, в зоне долома — пластичное, внутризеренное в образцах с малой долговечностью разрушение в зоне КПН менее хрупкое, а в зоне долома менее пластичное (рис. 52). При кадмировании той же стали долговечность снизилась от 4 сут (без кадмирования) до 5—10 ч разрушение в зоне КПН было межзеренным, но менее хрупким, чем без кадмирования. Охрупчивания в зоне долома при КПН с увеличением долговечности, как правило, не наблюдается, в противоположность замедленному разрушению при водородной хрупкости.  [c.79]


Смотреть страницы где упоминается термин Водородная хрупкость : [c.235]    [c.261]    [c.335]    [c.290]    [c.374]    [c.103]    [c.105]    [c.53]    [c.45]    [c.53]    [c.310]    [c.352]    [c.487]    [c.67]    [c.205]    [c.400]   
Смотреть главы в:

Коррозия и защита от коррозии  -> Водородная хрупкость

Высокопрочные стали  -> Водородная хрупкость


Теплотехнический справочник (0) -- [ c.580 ]

Коррозия и защита от коррозии (2002) -- [ c.164 ]

Металлы и сплавы Справочник (2003) -- [ c.372 , c.697 ]

Теплотехнический справочник Том 1 (1957) -- [ c.580 ]

Гальванотехника справочник (1987) -- [ c.108 ]



ПОИСК



АЛФАВИТНО водородная хрупкость

Анализ теорий обратимой водородной хрупкости

Влияние (5-стабилизаторов на склонность a-сплавов к водородной хрупкости

Влияние a-стабилизаторов и нейтральных упрочнителей на склонность титана к водородной хрупкости

Влияние величины зерна на склонность а--(3-сплавов к водородной хрупкости

Влияние легирующих элементов и примесей на склонность ap-спдавов к водородной хрупкости

Влияние скорости деформации и температуры на водородную хрупкость

Влияние структуры на склонность титана и a-сплавов к водородной хрупкости

Влияние температуры испытаний на склонность а-(-(3-сплавов , 1 к водородной хрупкости

Влияние температуры испытаний на склонность титана и a-сплавов к водородной хрупкости

Влияние температуры на склонность (3-сплавов к водородной i хрупкости

Влияние термической обработки на склонность а(3-сплавов fK водородной хрупкости

Влияние химического состава и структуры стали на водородную хрупкость

Водородная

Водородная хрупкость меди

Водородная хрупкость стали

Водородная хрупкость стали (77. С. Мороз и Т. Э. Мингин)

Водородная хрупкость стали титановых сплавов

Водородная хрупкость технологического происхождения

Водородная хрупкость титановых сплавов

Водородная хрупкость, механизм

Водородная хрупкость, механизм при высокотемпературном наводороживании

Водородная хрупкость, механизм сварке

Водородная хрупкость, механизм теории

Водородная хрупкость, механизм технологических операциях передела и обработки

Водородная хрупкость, механизм характер разрушения

Водородная хрупкость, механизм эксплуатации

Дислокационная гипотеза обратимой водородной хрупкости

Другие методы предотвращения водородной хрупкости

Защита от водородной хрупкости и коррозионного растрескиваКатодные покрытия

Классификация видов водородной хрупкости металлов

Металлы склонные к водородной хрупкости

Методы борьбы с водородной хрупкостью титана и его сплавов

Методы оценки водородной хрупкости

О природе водородной хрупкости титана и его сплавов

Общие представления о водородной хрупкости шестого вида

Принципы выбора состава титановых сплавов, мало склонных к водородной хрупкости

Сталь водородная хрупкость

Теории водородной хрупкости стали

Теория водородной хрупкости

Условия проявления водородной хрупкости шестого вида в сталях и титановых сплавах

Хрупкость

Чувствительность к водородной хрупкости

Чувствительность к водородной хрупкости влияние прочности

Чувствительность к водородной хрупкости закалке (шкалы)

Чувствительность к водородной хрупкости надрезу

Чувствительность к водородной хрупкости скорости деформации

Чувствительность к водородной хрупкости структуры

Чувствительность к водородной хрупкости температуры

Чувствительность к водородной хрупкости химического состава



© 2025 Mash-xxl.info Реклама на сайте