Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь и сплавы концентрации кислород

На коррозию меди и кремнистых бронз не оказывали влияния изменения концентрации кислорода в морской воде в течение 1 года экспозиции. В то же время, как показано на рис. 107, скорости коррозии других сплавов возрастали с увеличением концентрации кислорода.  [c.278]

Медь и бронза не стойки в дистиллированной воде уже при температуре 200° С. Ионы меди, образовавшиеся в процессе коррозии, могут осаждаться на других металлах и интенсифицировать их коррозию. С увеличением концентрации кислорода в воде стойкость меди уменьшается, а коррозия становится язвенной. При наличии щелей и зазоров коррозия меди и ее сплавов ускоряется  [c.227]


Кислород и углекислота попытают коррозионную агрессивность пара в зонах, где начинается его конденсация. Присутствие аммиака, наоборот, снижает интенсивность углекислотной коррозии черных металлов, но несколько усиливает коррозию меди и ее сплавов. При совместном присутствии в паре углекислоты и аммиака принципиально возможно образование отложений, состоящих из бикарбоната аммония в элементах парового тракта, в которых длительное время сохраняется конденсат. Такими элементами на одном из заводов оказались импульсные трубки парамеров и манометров. При длительном контакте конденсата с паром, содержащим аммиак и углекислоту, происходило постепенное насыщение ими жидкой фазы. За счет диффузии концентрация образующегося углекислого аммония во всем объеме жидкости, заполняющей трубку, достигла состояния насыщения, что привело к выпадению из раствора кристаллов двууглекислого аммония, имеющего меньшую растворимость, нежели карбонат аммония. Иногда это влекло за собой полную закупорку сечения трубок. Введение систематической продувки импульсных трубок приборов устранило это явление.  [c.155]

Образец помещается в камеру, где поддерживается специально подобранная концентрация кислорода, при которой окисляться может только алюминий. Оказавшиеся на поверхности атомы кислорода по междоузлиям кристаллической решетки диффундируют в сплав. У края образца появляется узкая область (рис. 142,а), где в твердом растворе содержатся медь, алюминий и кислород (для удобства рассмотрения мы, как и прежде, считаем, что кислород проникает в образец только с одной стороны).  [c.243]

Медь и ее сплавы проявляют высокую коррозионную стойкость в природных водах. Это связано с наличием на их. поверхности защитного слоя таких соединений, как, например, основной карбонат меди. Стойкость этих материалов зависит от концентрации растворенных в воде солей, жесткости воды и присутствия растворенных газов. Однако при наличии комплексообразующих ионов (аммония), особенно при хорошем притоке кислорода, может начаться быстрая коррозия меди. Наблюдается повышенная скорость коррозии меди и в мягких водах, содержащих значительные количества свободной двуокиси углерода.  [c.105]

Создание стойких к окислению сплавов часто основано на применении растворенной добавки, которая имеет значительно большее сродство к кислороду, чем растворитель. Типичным примером является система сплавов Си—А1 с добавкой 10 вес.% А1. Когда эти бинарные сплавы окисляются при 800° С, очень быстро образуется закись меди и одновалентные катионы меди пересекают поверхность раздела сплав — окисел в направлении окисла. Концентрация алюминия на поверхности раздела возрастает до тех пор, пока не сформируется слой заш,итного окисла. Э от слой непроницаем для ионов одновалентной меди, которые не могут более проникать в слой закиси меди. Последний подвергается дальнейшему окисле нию в окись меди. Фактором, определяющим быстроту создания такой защиты, является диффузия алюминия к поверхности раздела металл—окисел, где алюминии окисляется в глинозем. Чем выше содержание алюМиния в сплаве, тем быстрее уменьшается скорость окисления (с образованием закиси меди), как это показано на фиг. 13 для ряда бинарных сплавов Си—А1 [26]. Аналогичное поведение наблюдается для сплавов Си—Be [27, 28], на которых образуется защитный слой из ВеО. Соотношение между двумя окислами меди, получающимися в процессе окисления при 500° С, показано на фиг. 14.  [c.38]


Примечания. I Стойкость "меди и ее сплавов зависит от концентрации раствора в присутствии кислорода воздуха коррозия усиливается. 2 Коррозия усиливается при повышении температуры.  [c.435]

Латуни подразделяют на простые и специальные. Простые латуни представляют собой сплав меди с цинком. Специальные латуни кроме меди и цинка содержат в небольших количествах другие металлы. Сварка латуни связана с трудностями вследствие активного поглощения газов жидкой ванной, повышенной склонностью металла шва и околошовной зоны к образованию пор и трещин, а также испарением цинка. Интенсивность испарения цинка зависит от его содержания в латуни и от режима сварки. Цинк, соединяясь с кислородом, образует окись цинка, концентрация которой более 0,005 мг/л вызывает профессиональное заболевание сварщиков — литейную лихорадку- Кроме того, испарение цинка снижает качество сварного соединения. При наличии в пламени горелки водорода цинк испаряется быстрее, а следовательно, увеличивается пористость в сварном шве. Поэтому пламя надо регулировать так, чтобы оно было окислительным с избытком кислорода до 25%. Однако наличие избытка кислорода в пламени приводит к усиленному окислению цинка. Для нейтрализации кислорода применяют присадочную проволоку с сильными раскислителями. При выборе марки присадочной проволоки следует учитывать марку основного металла и соблюдать требования, предъявляемые к сварному соединению. Для простых латуней можно применять латунную проволоку той же марки, что и основной металл, но для устранения испарения цинка из сварочной ванны рекомендуется производить сварку с флюсом БМ-1. Положительные результаты бывают достигнуты при использовании присадочной проволоки ЛК-62-05, содержащей 0,4—  [c.136]

Установлено, что при отсутствии кислорода и других окислителей растворы аммиака не могут агрессивно воздействовать на медь и ее сплавы, поэтому можно не опасаться аммиачной коррозии латунных труб при концентрации аммиака в конденсате до 10 мг/л и отсутствии растворенного кислорода. При наличии же даже небольшого количества кислорода аммиак корродирует латунь и другие медные сплавы при концентрации 2—3 мг/л.  [c.174]

Нелегированный ниобий быстро корродирует в воде при температуре 350° С, а в паре — при температуре 400° С. Хотя ниобий высокой чистоты обладает более высокой стойкостью, однако ни один из нелегированных сортов его не пригоден для использования в горячей воде под давлением. С помощью легирования удается значительно улучшить коррозионную стойкость ниобия при указанных выше параметрах. Наиболее эффективно двойное легирование ниобия титаном, молибденом, ванадием и цирконием и тройное легирование его титаном, хромом и молибденом. Многие из этих сплавов в воде при температуре 350° С в условиях облучения подвергаются коррозии менее значительно, чем цирконий. На поверхности сплавов образуется пленка [111,225]. Дисперсионно твердеющие стали А17-4РН (с концентрацией 15—17% хрома, 3—5% никеля, 3—4% меди, 0,25—0,4% ниобия и тантала) устойчивы в насыщенной воздухом воде при температурах до 350° С. Карбиды титана, вольфрама, тантала не стойки в воде, содержащей кислород.  [c.232]

Наиболее неблагоприятные условия для работы трубок из медьсодержащих сплавов создаются в камере воздухоохладителя конденсатора. Из-за малой конденсации пара трубки камеры воздухоохладителя слабо омываются конденсатом, что способствует созданию высоких концентраций аммиака в присутствии кислорода и приводит к повышению степени загрязнения конденсата турбин соединениями меди. Повышение интенсивности омывания трубок воздухоохладителя конденсатом обеспечивает понижение местных концентраций аммиака.  [c.65]

На фотографии (рис. 141), снятой через электронный микроскоп, прекрасно видны оксидные частицы, вкрапленные в медную матрицу. Строго говоря, матрица не чисто медная в ней содержатся и кислород (концентрации Со), и остаточный (не выведенный в оксид) алюминий. Однако из-за низкого порога реакции окисления алюминия его содержанием в меди можно безбоязненно пренебречь. По крайней мере, при рабочих температурах сопротивление этого твердого раствора почти такое же, как и чистой меди. Зато прочность сплава из-за присутствия оксидных частиц станет намного выше. Причем оксид алюминия — вещество тугоплавкое и в меди почти не растворяется. А поэтому упрочняющий эффект сохраняется вплоть до температуры плавления металла.  [c.243]


Наиболее нагруженными элементами криогенной техники являются сосуды давления, работающие при температурах t от комнатных до низких (-200 °С) и сверхнизких (-270 °С). Сосуды для производства, хранения и транспортировки сжиженных газов объемом от сотен литров (жидкий гелий, водород) до нескольких тысяч куб.м (жидкий азот, кислород), изготавливаются из высоколегированных пластичных сталей с содержанием никеля 8-10% и более, никелевых сплавов или чисто-гр никеля, меди, медных и алюминиевых сплавов. Применение цветных сплавов при этом связано с необходимостью снижения температурных напряжений за счет высокой теплопроводности и отражающей способности. Снижение концентрации напряжений до величин = 1,2-2 в этих сосудах достигается применением отбортованных патрубков, сферических и эллиптических днищ, стыковых швов, а снижение дефектности сварных швов -разработкой специальной технологии сварки и соответствующим дефектоскопическим контролем (в том числе вакуумированием).  [c.74]

Влияние концентращга кислорода в морской воде на коррозию бронзы после I года экспозиции показано на рис. 107. Коррозия бронзы возрастала с увеличением концентрации кислорода линейно, но медленно, и при концентрации кислорода 5,75 мл/л они корродировали с той ке скоростью, что медь и другие медные сплавы.  [c.276]

Медь II медные сплавы обладают слабой пассивируемостью. Она достаточно устойчива в неокисляющпх кислотах при отсутствии доступа кислорода в серной кислоте низких концентраций, соляной кислоте низких и средних концентраций, уксусной, лимонной кислотах и др. Вследствие того, что растворы кислот практически всегда содержат кислород, медь в кислотах подвержена коррозии.  [c.247]

Природу связи между сплавами Си — Он сапфиром исследовали Чакладер и др. [10]. Использовав метод сидячей капли, авторы определили изменение краевого угла в зависимости от содержания кислорода в сплавах меди. При концентрации кислорода выше 0,18% на поверхности раздела было обнаружено соединение СиАЮг. Смачивание происходило при очень малых содержаниях кислорода (0,18%). Не исключалась возможность неполного растворения СиО в Си.  [c.331]

Все вещества, содержащиеся в питательной и котловой воде, по своему влиянию на процесс коррозии стали можно подразделить на стимуляторы и ингибиторы (замедлители) коррозии. В условиях работы котлов типичными стимуляторами коррозии стали являются ионы хлора и концентрат едкого натра, которые ослабляют защитные свойства пленок. Механизм разрушающего действия хлоридов на окисные пленки состоит в следующем. Ионы хлора способны адсорбироваться (поглощаться) окисными пленками, расположенными на металле, и вытеснять из последних ионы кислорода. В результате такой замены в точках адсорбции получается растворимое в воде хлористое железо, что приводит к увеличению площади анодных участков. К классу анодных ускорителей коррозии относятся также комплексо-образователи, которые, вступая во взаимодействие с ионами корродируемого металла, сильно пони сают концентрацию последних и разрушают защитные пленки, состоящие из его окислов. Примером комплексообразо-вателя является аммиак, который при условии наличия кислорода сильно ускоряет процесс растворения меди и медных сплавов, связывая ионы меди в хорошо растворимые в воде медно-аммиачные комплексы Си(МНз)2+ .  [c.45]

Поддержание избытка аммиака на уровне 300— 500 мкг/л обеспечивает практически полное отсутствие щелочной реакции питательной воды на участке ПВД — паровые котлы. Увеличение концентрации аммиака сверх этой величины возможно лишь при исключении из тракта элементов оборудования, изготовленных из меди и медных сплавов, так как сочетание аммика и кислорода вызывает аммиачную коррозию этих металлов.  [c.262]

Нерастворимые элементы РЬ и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики (соответственно при 326 и 270 °С), располагаюш иеся по границам зерен основной фазы, они вызывают красноломкость. Причем вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку его растворимость ограничивается 0,001 %. Вредное влияние свинца также проявляется при малых его концентрациях (< 0,04 %). Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы. Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивания. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его применяют для легирования. 3. Нерастворимые элементы О, S, Se, Те присутствуют в меди и ее сплавах в виде промежуточных фаз (например, СигО) СигЗ), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости. Кислород при отжиге меди в водороде вызывает водородную болезнь , которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.  [c.303]

Аэробная коррозия проявляется в средах, содержащих достаточное количество свободного и растворенного в воде кислорода. Аэробные микроорганизмы могут вызывать коррозию углеродистой стали, нержавеющей стали, например стали 321, алюминия и его сплавов, таких как 6061-Т6, 2014Т6 и 1100, меди и ее сплавов и других конструкционных материалов, применяемых в химической промышленности. С увеличением концентрации кислорода в технологических средах скорость биологической коррозии увеличивается. Вместе с тем имеются коррозионно-активные микроорганизмы, например сапрофитные семейства Pseudomonada eae, которые ингибируют процесс коррозии углеродистой стали. При этом ингибиторный эффект усиливается с увеличением дегидрогеназной активности бактерий [35].  [c.58]


Введение пероксида водррода и газообразного кислорода в воду позволяет снизить концентрацию растворенных в воде соединений железа в 1,5—3 раза по сравнению с концентрациями этих соединений в воде, обработанной традиционными методами, например гидразинно-аммиачным методом. Общим для методов с дозированием кислорода и пероксида водорода является и то, что они могут применяться для предуп реждения коррозии стального оборудования. Противокоррозионную защиту меди и ее сплавов данный метод не обеспечивает.  [c.124]

В горячей концентрированной соляной кислоте, однако,, медь довольно легко растворяется и с выделением водорода. В этом случае образуются комплексные ионы меди (СиСЬ)" и потенциал ее сильно разблагораживается, а благодаря высокой концентрации ионов водорода делается возможным протекание процесса водородной деполяризации. Рассмотренные электрохимические характеристики и определяют характер стойкости меди и медных сплавов.. Они довольно стойки в разбавленных и средних концентрациях неокисляющих кислот (НС1, H2SO4, уксусной, лимонной). Однако наличие окислителей, таких, как HNO3,, Н2О2, или даже продувание кислорода или воздуха через, эти растворы, заметно повышает скорость коррозии меди и медных сплавов.  [c.280]

Из применяемых в настоящее время реагентов аммиак наиболее агрессивен по отношению к меди И ее сплавам. Неудовлетворительный контроль и неправильная вентиляция 2 могут вызвать появление опасных концентраций аммиака, который при наличии кислорода растворяет медь. Имеется ряд сообщений об аммиачной коррозии медных и латунных деталей. С этой точки зрения аммиак можно применять только при правильной конструкций и хорошей вентиляции паровых систем. Аммиачная обработка требует тщательного наблюдения за эффектом обескислороживания воды и осторожного регулирования pH во избежание коррозии меди. По данным Ристропа и Пауэлла, циклогексиламин заметно уменьшает растворение меди. Иенсен и Ланг изучали действие циклогексиламина и морфолина на электростанции с двумя турбо-  [c.22]

Коррозионным, электрохимическим и физическим исследованиям сплавов Си — N1 посвящено много работ в связи с изучением природы пассивного состояния металлов [1] и границ химической стойкости твердых растворов [2, 3]. Установлено, что сплавы, содержащие более 60 ат. % меди, теряют свойственную никелю способность пассивироваться и в ряде коррозионных сред ведут себя подобно меди.. Область медноникелевых сплавов, в которых проявляется пассивность, приблизительно совпадает с областью существования свободных электронных вакансий в й-уровнях никеля, взаимодействие которыми, по мнению ряда авторов [1], обусловливает прочную хемосорбционную связь метал.ча с кислородом и тем самым его пассивность. При полном заполнении ( -уровней никеля электронами меди (что происходит при содержании в сплаве более 60 ат. % меди) способность сплава к образованию ковалентных (электронных) связей с кислородом исчезает, металл вступает в ионную связь с кислородом, образуя фазовые окислы, не обладающие защитными свойствами. Скорчеллетти с сотрудниками [3] считают заполнение -уровней никеля не единственной и не главной причиной изменения химической стойкости меднопикелевых сплавов с изменением их состава. Большое значение придается свойствам коррозионной среды, под воздействием которой может изменяться структура и состав поверхностного слоя сплава, определяющего его коррозионное поведение. Этот слой в зависимости от агрессивности среды может в большей или меньшей степени обогащаться более стойким компонентом сплава, с образованием одной или нескольких коррозионных структур, что приводит к смещению границы химической стойкости сплавов. Это предположение подтвердилось при исследовании зависимости работы выхода электрона от состава сплавов до и после воздействия на них коррозионных сред (например, растворов аммиака различной концентрации).  [c.114]

Таким образом, с повышением концентрации меди в сплаве растет степень окисленности поверхности и изменяется природа связи кислорода с металлом. Если адсорбция происходит на окисленно поверхности, то это может привести к ослаблению связи с радикалами ОНадс и НОзадо образующимися на первой стадии окисления и восстановления перекиси по реакциям (2) и (4). Поэтому скорость электрохимической десорбции этих радикалов должна возрасти, а перенапряжение электродных реакций — уменьшиться. Это должно привести к увеличению скорости разложения перекиси водорода,  [c.120]

В присутствии соответствующих комплексообразовате-лей на анодных участках образуются комплексные ионы металла. Уменьшение концентрации простых ионов металла у анода ведет к увеличению скорости анодного процесса. В случаях, когда анодный процесс бывает заторможенным, появление в растворе мощного комплексообразователя сопровождается существенным увеличением скорости -коррозии. Известно, например, что при одновременном присутствии в растворе растворенного кислорода и аммиака последний является анодным ускорителем для меди и медных сплавов, поскольку ионы меди связываются аммиаком в медно-аммиачные комплексы. Даже такие коррозионно-стойкие металлы, как серебро и золото, начинают растворяться, если в растворе присутствуют цианиды N , являющиеся для Ag и Ли активными комплексообразователями.  [c.44]

Так как отдельные элементы оборудования конденсат-но-питательного тракта выполняются из медных сплавов, то, создавая щелочную среду с помощью аммиака, необходимо соблюдать осторожность в отношении его дозирования. Увеличение концентрации свыше 500 мкг/л приводит к усилению коррозии латунных трубок конденсаторов турбин и подогревателей низкого давления. Если в чистой воде и в растворах нейтральных солей медь и ее сплавы кор-розионно-устойчивы, то в растворах аммиака и аммонийных солей их устойчивость сильно понижена. Это объясняется уменьшением анодной поляризации в связи с образованием комплексных ионов типа [2п(ЫНз) ]2+ и [Си(ЫНз)л] +, где п может достигать шести. Катодным деполяризатором для меди, цинка и их сплавов является кислород. Чем больше концентрация в воде кислорода и аммиака, тем быстрее протекает коррозия этих сплавов. Внешне этот вид коррозии характеризуется обесцинковани. М латуней и появлением трещин в местах, где имеются внутренние и внешние растягивающие напряжения.  [c.72]

Неоднократно предпринимались попытки по вычислению скорости роста подокалины при наличии наружной окалины и без нее. Если парциальное давление кислорода в окружающей газовой среде поддерживать на достаточно низком уровне, то образования наружной окалины можно избежать. Райне, Джонсон и Андерсон [515], Даркен [516], а также Мейеринг и Друйвестейн [514] подсчитывали для подобных случаев скорость проникновения фронта реакции в глубь металла исходя из следующих предположений кислород растворяется на поверхности сплава и диффундирует внутрь со скоростью [517], считающейся независящей от присутствия второго элемента Ме этот элемент диффундирует наружу и образует свой окисел при взаимодействии с кислородом", диффундирующим в обратном направлении, тогда как сам легируемый металл никакого окисла не образует концентрационные градиенты кислорода и легирующего элемента Ме в подокалине изменяются по линейной закономерности выпадающий окисел элемента Ме не препятствует диффузии. Как было установлено, последнее условие соблюдается для медных сплавов только при повышенных температурах (см. выше). Воспользовавшись законами Фика, Райне, Джонсон и Андерсон получили довольно сложное выражение, характеризующее перемещение фронта окисления в глубь металла. Поэтому они ввели дополнительные упрощения, предполагающие пренебрежение сравнительно малыми концентрациями кислорода и легирующего металла Ме у фронта реакции, а также металла Ме на поверхности. При этих предпосылках они получили уравнение скорости роста подокалины, содержащее только скорости диффузии кислорода и металла Ме в чистой меди. Это выражение соответствует параболическому росту подокалины.  [c.196]


Аммиак (ЫН40Н). Ингибитор анодного действия. Используется для повышения pH питательной воды, кон-денсанта пара практически любых параметров, а также для консервации паровых котлов. При наличии в воде кислорода может вызывать коррозию оборудования, изготовленного из меди и медных сплавов. Концентрация его в питательной воде поддерживается до 1 мг/кг.  [c.54]

В отношении химич. агентов Р. является металлом относительно стойким. В сухом воздухе чистая Р. окисляется с образованием красной окиси HgO только при продолжительном нагревании до 1°, близких к При дальнейшем сильном нагревании HgO распадается вновь на Р. и кислород. Р. во влажном воздухе, а также загрязненная, окисляется несколько быстрее с образованием закиси ртути Hg2 0, покрывающей металл тонкой пленкой. При комнатной 1° ртуть легко соединяется непосредственно с хлором и труднее с бромом. С серой Р. соединяется при комнатной при продолжительном растирании. В расплавленном фосфоре Р. растворяется, но с ним не соединяется. Из минеральных к-т на Р. действуют только те, которые действуют окисляюще, т. е. конц. серная и конц. и разбавленная азотная, а также царская водка, причем в зависимости от концентрации и Г реакций образуются соединения одно-или двувалентной Р. Разбавленная серная и конц. соляная к-ты на Р. не действуют, т. к. последняя обладает положительным потенциалом (в соприкосновении с раствором одновалентной Р. 4-0,793 V, с раствором двувалентной-[-0,86 V) и располагается т. о. в ряду напряжений между медью и серебром. С многочисленными металлами Р. образует сплавы— амальгамы (см.) особенно легко со щелочными и щелочноземельными металлами, серебром, золотом, свинцом, оловом, цинком и кадмием, труднее с медью. Совсем не образует амальгам с железом, никелем, кобальтом и марганцем. Для получения амальгам иногда достаточно соприкосновения жидкой ртути с соответствующим металлом некоторые амальгамы получают путем выделения Р. из растворов ее солей на менее благородном металле иногда пользуются электрич. током, выделяя соответствующий металл на ртутном катоде. Среди сплавов амальгамы занимают особое место, т. к. многие из них жидки или тестообразны уже при комнатной 1°. В химич. отношении они не отличаются от прочих сплавов, т. к. среди них имеются простые растворы других металлов в Р. (например цинк, кадмий), равно как и химич. соединения (щелочные металлы, медь, золото и другие). Особое место занимает амальгама аммония, получающаяся при обработке натриевой амальгамы крепким раствором хлористого аммония, быстро разлагающаяся уже при комнатной Г на Р., аммиак и водород.  [c.406]

Следующим классом анодных ускорителей будут являться комплексообразователи. Понижение концентрации собственных ионов металла может повышать скорость анодного процесса и, слсдовательно, скорость коррозии, особенно тех металлов, для которых малоэффективным является анодный процесс (например, для более благородных металлов). Такие интенсивные комплексообразователи, как цианиды, вызывают быстрое растворение даже серебра и золота. Аммиак (при условии наличия кислорода) сильно ускоряет процесс растворения меди и медных сплавов, связывая ионы меди в медно-аммиачные комплексы. Возможно, что подобное же ускоряющее действие на коррозию металлов (Си, Ре) оказывает и сероводород.  [c.162]

Концентрация кислорода в металле не может стать настолько высокой, чтобы быть пересыщенной по отношению к окислу, и выделения частиц окисла внутри меди не происходит. В случае кремния или марганца, так как они имеют большее сродство к кислороду, частицы их окислов могут выделиться. Райне нашел, что в этих и аналогичных случаях образуется субпленка, состоящая из частиц окисла кремния или другого элемента, выделенного в дисперсной форме в основном металле. Нижняя граница субпленки со временем постепенно продвигается внутрь в металл, и при высоких температурах, когда возможна диффузия растворенного кислорода через твердую медь, частицы находятся как внутри зерен, так и по их границам. Райне нагревал сплав меди с 0,1% кремния на воздухе при 1000° С и затем травил сечение образца в аммиаке с перекисью водорода. Он нашел, что поверхность темнеет в зоне, в которой выделился кремний. Граница этой потемневшей зоны шла точно параллельно поверхности, и ее толщина (у) увеличивалась со временем, приблизительно подчиняясь параболическому закону dy/dt = k/y, как и следовало ожидать. При более низких температурах (например, 600° С), когда диффузия в решетке становится медленной, окись кремния отлагается преимущественно по границам зерен, так как нарушение упорядоченного расположения атомов на границах благоприятствует диффузии. Различное поведение металла при высокой и низкой температурах схематически показано на фиг. 13. Подробности в статьях [17]. Образование наружных пленок на сплавах медь-марганец изучены Буйоном и Жардинье [18].  [c.68]

Для тех случаев, когда выбор материалов не ограничивается физическими соображениями, существует, как это можно заключить из наблюдений Роебука, несколько металлов, обладающих необходимой стойкостью. Так, титан, цирконий, гафний, платина, аустенитные нержавеющие стали и некоторые сплавы на основе кобальта практически не меняются под воздействием воды (за исключением того, что в некоторых случаях поверхность тускнеет) вплоть до 360°, эти металлические материалы устойчивы также и в перегретом паре при 400°. Никель стоек в воде лишь до 205°, медь и алюминий до 150°. Концентрация растворенного кислорода в применявшейся воде равнялась около 1 мл/л (даже на обычных силовых станциях она считалась бы очень высокой). Эти результаты можно было бы считать удовлетворительными, однако Де Поль показал, что в щелях (например, между головками заклепок и листом) даже нержавеющая сталь и сплавы кобальта подвергаются значительной коррозии уже при 260°, если кислород находится в количествах, равных от 5 до 10 мл/л-, отрицательное влияние кислорода значительно уменьшается, если зазор превышает 0,13 мм.  [c.427]

Следующим классом анодных ускорителей являются к о м-плексообразователи. Понижение концентрации собственных ионов металла может понижать термодинамическую устойчивость (для более благородных металлов), а также повышать скорость анодного процесса и, следовательно, скорость коррозии, особенно в том случае, когда малоэффективным является анодный процесс. Такие интенсивные комилексообразователи, как цианиды, вызывают быстрое растворен ле даже серебра и золота. Аммиак (в присутствии кислорода) сильно ускоряет процесс растворения меди и медных сплавов, связывая ионы меди в медно-аммиачные комплексы  [c.278]

В соляной кислоте коррозия меди больше, чем в серной (особенно при повышенной концентрации НС1), вследствие образования комплексов (СиСЬ) . Окислительные кислоты (HNO3, а также хромовая кислота), даже разбавленные, сильно действуют на медь и медные сплавы. В воде и в растворах нейтральных солей медь достаточно устойчива, однако доступ воздуха и окислителей заметно понижает ее устойчивость. В морской аэрированной воде при малой скорости движения медь характеризуется небольшим равномерныхм расгворением (порядка 0,05 мм/год). Листовая медь в свое время широко применялась для обшивки деревянных судов в целях защиты днища от обрастания и древоточцев. Медь стойка в щелочных растворах и достаточно устойчива в растворах многих органических кислот при малом доступе кислорода.  [c.529]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

В работе [177] приведены данные о коррозии некоторых сплавов на различных глубинах (7, 27, 42 и 80 м) в Черном море. Титан обладал стойкостью на всех глубинах и скорость коррозии была <0,01 г/(м-ч). На образцах из нержавеющей стали 18Сг —9№ наблюдался питтинг (2,8 мм после экспозиции в течение 21 мес), но с увеличением глубины погружения коррозия уменьшалась. На глубине 80 м наблюдалась лишь слабая щелевая коррозия. Повышение стойкости объяснялось уменьшением температуры и более низкой концентрацией растворенного кислорода на больших глубинах. Наименьшая коррозия углеродистой стали наблюдалась на глубине 27 м (0,039 г/м -ч), что авторы связывают с более интенсивным биологическим обрастанием на этом уровне. Коррозия медных сплавов усиливалась с глубиной (0,042 г/(м -ч) при погружении на 80 м), что объяснялось образованием на меди в темноте коррозионной пленки, не обладающей защитными свойствами.  [c.187]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]


Из алюминия и его сплавов можно изготовлять и другие детали, для реакторных установок трубки, вентили и т. д. Сплавы алюминия с титаном устойчивы в воде при температуре 280—300° С, но механические их свойства при этих условиях недостаточны. Сплавы алюминия с титаном (с концентрацией в них 0,2—0,5% железа, 0,2% марганца, 0,2% кремния и 0,5% никеля) достаточно стойки при температуре 315° С. Увеличение концентрации никеля с 0,5 до 2% при температуре воды 250 — 315° С и скорости ее движения 6—7 м1сек приводит к повышению стойкости сплава. Этого не наблюдается в неподвижной воде. Нейтронное облучение на стойкость сплава алюминия с никелем влияет благоприятно. Титан устойчив на воздухе при температуре 400—700° С (сведения противоречивы). В воде и паре титан и его сплавы также устойчивы. Для повышения устойчивости титана к нему добавляют цирконий, ванадий, тантал, молибден и медь в отдельности. В воде при температуре 250—318° С и наличии кислорода скорость коррозии титана (0,45 мг м час) в три-пять раз меньше, чем у нержавеющих сталей.  [c.297]

В сплавах с 0,18 - 0,32 % Zr образуется преимущественно карбид Сг2з Сб, температура растворения которого, по данным микроанализа, не превышает 1250°С при исследованных концентрациях углерода. Так как испытания нагревателей проводили при более высокой температуре и я.к. обнаруживалась при повышении концентрации углерода с 0,04 до 0,17 - 0,20 %, то есть основания считать, что отрицательное влияние углерода на развитие я.к. проявляется не только при наличии железохромистых карбидов, но и в случае присутствия углерода в твердом растворе. Сплавы с 13 — 18 % Сг в наибольшей степени подвержены Я.К., поэтому на сплавах типа Х15Ю5 (14,10 - 14,70 % Сг 5,2 — 5,7 % А1) бьшо изучено влияние на склонность к я.к. примесей серы (0,036 — 0,086 %), фосфора (0,15 %), кислорода (0,066 %), углерода (0,091 -0,27 %), азота (0,03 - 0,04 %) меди (0,05 - 0,19 %), кремния (0,26 -0,6%) [57].  [c.96]


Смотреть страницы где упоминается термин Медь и сплавы концентрации кислород : [c.100]    [c.203]    [c.557]    [c.281]    [c.65]    [c.265]    [c.69]    [c.486]    [c.529]    [c.207]    [c.241]   
Морская коррозия (1983) -- [ c.99 , c.100 , c.272 , c.273 ]



ПОИСК



Кислород

Концентрация кислорода

Медиана

Медь и сплавы

Медь и сплавы меди

Медь — кислород



© 2025 Mash-xxl.info Реклама на сайте