Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медные коррозия

Конденсаторы медные, коррозия 268  [c.827]

Нагреватели выбор материала (табл.) 368 медные, коррозия 368 Нейзильбер, коррозия в различных средах (табл.) 294 Никель, см. также Сплавы никеля коррозия в различных средах 345, 346, 362,  [c.828]

Для металлизации применяют проволоки медные, алюминиевые, стальные и цинковые, а также неметаллические материалы в виде Порошков (стекла, эмали, пластмасс). Металлизационный слой состоит из мелких поверхностно-окисленных частичек металла и имеет меньшую прочность и плотность по сравнению с наплавленным слоем. Металлизацию применяют для защиты от изнашивания, коррозии, а также в декоративных целях для таких изделий, как Цистерны, бензобаки, мосты, изнашивающиеся части валов, деталей машин и т. п.  [c.229]


Рис. 221. Зависимость скорости коррозии стали Х13 в 0,5%-ной НС1 при 25° С от средней толщины пористых медных н платиновых покрытий Рис. 221. Зависимость <a href="/info/39683">скорости коррозии</a> стали Х13 в 0,5%-ной НС1 при 25° С от средней толщины пористых медных н платиновых покрытий
Довольно часто наблюдается влияние кристаллографической ориентации на скорость коррозии металлов. Так, медный моно-кристаллический - электрод, выточенный в форме шара, после анодного травления в растворах фосфорной и серной кислот принимает форму многогранника. При травлении металлографических шлифов на зернах с различной кристаллографической ориентировкой получают разные фигуры травления (рис. 224).  [c.326]

Один из методов борьбы с коррозией металлов при трении — повышение их коррозионной стойкости, в частности применение для работы в морской воде ряда сплавов на медной основе. Для  [c.340]

Так как стандартный потенциал меди гораздо положитель-нее стандартного потенциала водородного электрода, коррозия медн с водородной деполяризацией не происходит. В отсутствие окислителей медь обладает хорошей стойкостью в водных растворах II в обычных условиях не вытесняет водород из кислот. Процесс электрохимической коррозии меди протекает в окислительных средах (присутствие в растворе кислорода и других окислителей). Медь обычно корродирует, переходя в раствор в виде двухвалентных ионов Сн +.  [c.247]

Газовая коррозия меди и медных сплавов. Чистая медь не жаростойка при высоких температурах, хотя стойкость ее к окислению выше, чем у железа. На рис. 175 показано увеличение скорости окисления меди в воздухе и кислороде с ростом температуры.  [c.254]

В атмосфере углекислоты медь неустойчива. Хлор, бром и йод при температурах ниже точек плавления их соединений с медью разрушают ее, а с повышением температуры скорость коррозии сильно возрастает. Медь можно применять в газообразных НС1 и lo при температурах ниже 225 и 260° С соответственно. Азот не действует на медь п ее сплавы, а окислы азота разрушают медные сплавы. Аммиак также вызывает окисление меди и ее сплавов. В условиях диссоциации аммиака наблюдается водородная коррозия меди.  [c.255]


Загрязнение продукции. Небольшое количество меди, по ступившее в систему в результате коррозии медного трубопровода или латунного оборудования, может испортить целую партию мыла. Соли меди ускоряют старение и порчу мыла и тем самым  [c.18]

Специальные аноды и катодная защита. Если дренаж между точками В я С (рис. 11.1) установить невозможно, то в направлении рельса закапывают специальный анод из чугуна, который соединяют с точкой В медным проводником. Тогда блуждающие токи вызывают коррозию только этого специального анода, замена которого обходится достаточно дешево. Если в цепь между анодом и трубой включен источник постоянного тока и ток течет в направлении противоположном блуждающим токам, то это будет равносильно катодной защите трубы. Такая защита применяется, когда дополнительного анода недостаточно для полного устранения коррозии блуждающими токами.  [c.214]

Никелевые покрытия в основном получают электроосаждением. Металл наносят или непосредственно на сталь или иногда на промежуточное медное покрытие. Подслой меди нужен, чтобы облегчить полировку никелируемой поверхности (медь мягче стали). Это позволяет также уменьшить толщину никелевого слоя (никель дороже меди), необходимую для обеспечения минимальной пористости. Правда, в промышленной атмосфере слишком тонкие никелевые покрытия, нанесенные на медь, могут корродировать быстрее покрытий непосредственно на стали, в основном из-за того, что продукты коррозии меди, образующиеся в порах никелевого покрытия, усиливают агрессивное воздействие на никель [3]. Но такая ситуация не обязательно возникает в других атмосферах.  [c.233]

Медные сплавы, из которых изготовлены конденсаторы, также подвергаются коррозии, если растворенный кислород присутствует совместно с диоксидом углерода, однако в отсутствие кислорода коррозия медных сплавов незначительна. Так как диоксид углерода не расходуется в процессе коррозии, он будет по мере поступления питательной воды накапливаться, если его время от времени не удалять (периодически заменяя часть котловой воды).  [c.285]

Для предотвращения вредного влияния загрязнения воды ионами Си + можно применять медные трубы, внутренняя поверхность которых покрыта оловом (из так называемой луженой меди). Оловянное покрытие не должно иметь пор, чтобы избежать усиления коррозии меди на незащищенных участках из-за действия олова (или интерметаллических соединений медь—олово), которое является катодом по отношению к меди.  [c.328]

Оловянистые бронзы представляют собой сплавы медь—олово, отличающиеся высокой прочностью. Сплавы, содержащие более 5 % Sn, особо устойчивы к ударной коррозии. По сравнению с медью сплавы медь—кремний, содержащие 1,5—4 % Si, имеют лучшие физические свойства и идентичны по стойкости к общей коррозии. При содержании 1 % Si стойкость сплавов к КРН недостаточна, но у сплава с 4 % Si она становится вполне удовлетворительной [2]. Проведенные в Панаме испытания в морской воде показали, что наиболее стойкими из всех медных сплавов является сплав А1—Си с 5 % А1. Потеря массы этого сплава при испытаниях в течение 16 лет составила 20 % от соответствующей потери меди [15].  [c.330]

Медно-цинковые сплавы имеют лучшие, чем медь, физические свойства и обладают большей стойкостью к ударной коррозии. Поэтому трубы конденсаторов преимущественно изготавливают не из меди, а из латуни. Коррозионное разрушение латуней обычно происходит вследствие обесцинкования, питтинга или КРН. Склонность латуней к коррозии такого рода, за исключе-  [c.330]

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]


В быстродвижущихся водах алюминиевая латунь более стойка к ударной коррозии, чем адмиралтейский металл. Медно-никелевые сплавы обладают особо высокой стойкостью в быстро движущейся морской воде, если они содержат небольшие количества железа  [c.339]

Для предохранения крепежных деталей от коррозии применяются соответствующие защитные покрытия. ГОСТ 1759-70 устанавливает следующие условные обозначения покрытий цинковое покрытие с хроматированием-01 кадмиевое с хромати-рованием-02 многослойное (медь-никель)-03 многослойное (медь-никель-хром) -04 окисное-05 фосфатное с промасливанием-06 оловянное-07 медное-08 цинковое-09 окисное анодизационное с хроматированием-10 пассивное -11 серебряное-12. Детали, выполняемые без покрытия, характеризуются индексом 00  [c.165]

При дуговой сварке для предупреждения межкристаллитной коррозии сварных соединений рекомендуются сварка на малых погонных энергиях q/v, Дж/см) с применением теплсотводящих медных подкладок в целях получения жес1ких термических циклов и уменьшения времени пребывания металла при высоких температурах термическая обработка после сварки нагрев до температуры 1100 °С и закалка в воду. При нагреве происходит растворение карбидов, а закалка фиксирует чисто аустенитную структуру.  [c.233]

Мотоэлектрическим эффектом объясняются случаи местной коррозии медных сплавов в местах, где скорость движения электролита по отношению к металлу наиболее высока.  [c.247]

При наличии в воздухе частиц хлористых солей (в частности, в морской атмосфере) больщииство технических металлов и сплавов подвергается усиленной коррозии. Некоторые примеси в воздухе могут усиливать коррозию одних металлов и не оказывать влияния на другие. Так, медь и медные сплавы подвергаются усиленной коррозии при наличии в атмосфере даже небольших количеств паров аммиака, никель же в этих условиях не разрушается. Во влажном воздухе, даже загрязненном 502, НгЗ и некоторыми другими газами, свинец не подвержен коррозии, так как на его поверхности образуется защитная пленка.  [c.180]

Медь II медные сплавы обладают слабой пассивируемостью. Она достаточно устойчива в неокисляющпх кислотах при отсутствии доступа кислорода в серной кислоте низких концентраций, соляной кислоте низких и средних концентраций, уксусной, лимонной кислотах и др. Вследствие того, что растворы кислот практически всегда содержат кислород, медь в кислотах подвержена коррозии.  [c.247]

В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению поверхности металла такими реагентами, которые растворяют только продукты коррозии, но не металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-иым раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализованного аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — иасьпценный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеюгций температуру 10—20° С.  [c.337]

Межкристаллитную коррозию вызывают, выдерживая образцы в стандартном кипящем растворе С.н504 и Н2504 с медными стружками. Затем измеряют частоту резонансных колебаний образцов и внутреннее трение.  [c.347]

В концентрационных элементах два одинаковых электрода контактируют с растворами разных составов. Существуют два типа концентрационных элементов. Первый называется солевым концентрационным элементом. Например, если один медный электрод погружен в концентрированный раствор сульфата меди, а другой — в разбавленный (рис. 2.3), то при замыкании такого элемента медь будет растворяться с электрода, находящегося в разбавленном растворе (анод) и осаждаться на другом электроде (катоде). Обе реакции ведут к выравниванию концентрации растворов. Другой тип концентрационного элемента, имеющий большое практическое значение, — элемент дифференциальной аэрации. Примером может служить элемент из двух железных электродов, погруженных в разбавленный раствор Na l, причем у одного электрода (катода) электролит интенсивно насыщается воздухом, а у другого (анода) — деаэрируется азотом. Различие в концентрации кислорода сопровождается возникновением разности потенциалов, что обусловливает протекание тока (рис. 2.4). Возникновение элемента этого вида вызывает разрушения в щелях (щелевая коррозия), образующихся на стыках труб или в резьбовых соединениях, поскольку концентрация кислорода в щелях ниже, чем снаружи. Этим также объясняется язвенное разрушение под слоем ржавчины (рис. 2.5) или коррозия на границе раздела раствор—.воздух (рис. 2.6). Доступ кислорода к участкам металла, покрытым ржавчиной или другими твердыми продуктами коррозии, затруднен по сравнению с участками, покрытыми тонкими пленками или свободными от них.  [c.25]

При избирательной коррозии, как и при обесцинковании, происходит преимущественное растворение одного или нескольких компонентов сплава. При этом образуется пористый скелет, сохраняющий первоначальную форму изделия. Избирательная коррозия характерна для сплавов благородных металлов, таких как Аи—Си или Ли—Ag, и используется на практике при рафинировании золота. Например, сплав Аи—Ag, содержащий более 65 % золота, устойчив в концентрированной азотной кислоте, как и само золото. Однако сплав, содержащий около 25 % Аи и 75 % Ag, реагирует с концентрированной HNO3 с образованием AgNOg и чистого золота в виде пористого остатка или порошка. Медные сплавы, содержащие алюминий, могут повергаться коррозии, аналогичной обесцинкованию, о преимущественным растворением алюминия.  [c.28]


Из поляризационной диаграммы медно-цинкового элемента (рис. 4.2) видно, что если за счет внешней поляризации сместить потенциал цинка до потенциала анода при разомкнутой цепи, то потенциал обоих электродов будет одинаков и цинк не будет корродировать. На этом основана катодная защита металлов — эффективный практический способ свести коррозию к нулю (этот вопрос рассмотрен в гл. 12). Внешний ток прилагают к корроди-  [c.68]

Атмосферная коррозия на стали с 0,3 % Си изучалась при 7,5-летней выдержке [20 J, для цинка н медн выдержка составляла 10 лет. Данные о морской коррозии взяты из orrosion Handbook. Данные о почвенной коррозии для стали усреднены результаты исследования в 44 видах почв при 12-летней выдержке для цинка — в 12 видах почв при 11-летней выдержке для медн — в 29 видах почв при 8-летией выдержке — на [20а].  [c.174]

В промышленной атмосфере медь покрывается зеленой защитной пленкой продуктов коррозии (патиной), состоящей главным образом из основного сульфата меди USO4 ЗСи(ОН)2. На медном куполе церкви, расположенной на окраине города, сторона, обращенная в сторону города, может быть покрыта зеленой патиной, а противоположная часть купола остается красно-коричневой, так как с этой стороны на медь попадает меньше серной кислоты. Патина, образующаяся на меди вблизи морских побережий, состоит из основного хлорида меди.  [c.177]

В 1824 г. Хэмфри Дэви [2], основываясь на данных лабораторных исследований в соленой воде, сообщил, что медь можно успешно защитить от коррозии, если обеспечить ее контакт с железом или цинком. Он предложил осуществлять катодную защиту медной обшивки кораблей с использованием прикрепленных к корпусу жертвенных железных блоков при соотношении поверхностей железа и меди I 100. При практической проверке скорость коррозии, как и предсказывал Дэви, заметно уменьшилась. Однако катодно защищенная медь обрастала морскими организмами в отличие от незащищенной меди, которая образует в воде ионы меди в концентрации, достаточной для уничтожения этих организмов (см. разд. 5.6.1). Так как обрастание корпуса уменьшает скорость судна во время плавания. Британское Адмиралтейство отвергло эту идею. После смерти X. Дэви в 1829 г. его двоюродный брат Эдмунд Дэви- (профессор химии Королевского Дублинского университета) успешно защищал железные части буев с помощью цинковых брусков, а Роберт Маллет в 1840 г. специально изготовил цинковый сплав, пригодный для использования в качестве жертвенных анодов. Когда деревянные корпуса судов были вытеснены стальными, установка цинковых пластин стала традиционной для всех кораблей Адмиралтейства . Эти пластины обеспечивали местную защиту, особенно от усиленной коррозии, вызванной контактом с бронзовым гребным валом. Однако возможность общей катодной защиты морских судов не изучалась примерно до 1950 г., когда этим занялись в канадском военно-морском флоте [3]. Было показано, что при правильном применении препятствующих йбрастанию красок и в сочетании с противокоррозионными красками катодная защита кораблей возможна и заметно снижает эксплуатационные расходы. Катодно защищенные, а следовательно, гладкие корпуса уменьшают также расход топлива при движении кораблей.  [c.216]

Обычно жесткие воды с положительным значением индекса насыщения сравнительно малокоррозионноактивны и не требуют какой-либо обработки для предотвращения коррозии. Мягкие воды, напротив, приводят к быстрому накоплению ржавчины в железных трубах. Они легко загрязняют свинцовые трубы солями свинца в токсичных количествах окращивают в голубой цвет санитарно-техническое оборудование солями меди, которые образуются при слабой коррозии медных и латунных труб. Лучшим способом защиты от коррозии в таких водах была бы вакуумная деаэрация. Однако стоимость обработки столь больших количеств воды очень велика, и в системах коммунального водоснабжения такие установки практически отсутствуют. Тем не менее, такую возможность надо принимать во внимание.  [c.278]

Силикат натрия в количестве 4—15 мг/л (в расчете на SiOj) используют иногда владельцы индивидуальных домов для обработки мягкой воды. Такая обработка уменьшает покраснение воды , вызываемое наличием взвеси ржавчины, которая образуется в железных трубопроводах. Исключается и голубое окрашивание при прохождении воды по медным и латунным трубам. Одновременно с этим реально наблюдается уменьшение скорости коррозии стали на 50—90 % [10, 11], однако не в любой воде [12, 13].  [c.279]

В морской и пресной водах коррозионная стойкость зависит от присутствия, на поверхности металла оксидных пленок, через которые должен диффундировать кислород, чтобы могла продолжаться коррозия. Установлено, что в дистиллированной воде при комнатной температуре на меди образуется оксидная пленка, состоящая из смеси Си О и СиО [3, 4 ]. Освещение видимым светом заметно замедляет скорость образования оксидов [3]. Пленка легко разрушается быстро движущейся водой, а также растворяется угольной и органическими кислотами, которые присутствуют в некоторых пресных водах или грунтах. В результате скорость коррозии заметно возрастает. Например, в Мичигане при смягчении горячей воды цеолитами с образованием значительных количеств NaH Oj сквозная коррозия медных водяных труб наблюдалась через 6—30 месяцев эксплуатации [5]. Та же самая, но несмягченная вода почти не проявляла коррозионной  [c.327]

Даже если скорость коррозии медных труб не слишком высока и они эксплуатируются достаточно долгое время, то продукты коррозии меди и медных сплавов, которые образуютсяМ1ри наличии в воде угольной и других кислот, могут вызывать окрашивание сантехнического оборудования. При контакте с такой водой усиливается коррозия железа, оцинкованной стали и алюминия. Это связано с протеканием реакции замещения, при которой металлическая медь осаждается на основном металле и образуются многочисленные небольшие гальванические элементы. При обработке кислых вод или вод с отрицательным значением индекса насыщения известью или силикатом натрия скорость коррозии падает до достаточно низких значений, чтобы прекратилось окрашивание и усиление коррозии других металлов, за исключением алюминия. Он чувствителен к присутствию в растворе чрезвычайно малых количеств ионов Си +, и обычная обработка воды не способна уменьшить содержание этих ионов до безопасного уровня. Ввиду токсичности растворенной меди служба здравоохранения США установила значение ее предельно допустимой концентрации в питьевой воде, равное 1 мг/л [7].  [c.328]

Медные трубопроводы обычно вполне пригодны для подачи морской, а также мягкой и жесткой пресной воды, как горячей, так и холодной. Однако нужно учитывать, что помимо описанных выше коррозионных явлений в воде с достаточно высокой электропроводимостью может наблюдаться питтинговая коррозия, которая связана с отложением на поверхности меди загрязнений или продуктов коррозии из других частей системы. При этом образуются элементы дифференциальдюй аэрации. Их действие в некоторых случаях усиливается турбулентным потоком, который вызывает ударную коррозию. Совокупность этих коррозионных явлений иногда называют коррозией под осадком. Периодическая очистка трубопроводов обычно предотвращает коррозию такого рода.  [c.328]

В NH4OH (содержащем Oj), так как образуется комплексный ион Си(ННз)4 . Амины также агрессивны по отношению к меди—они вызывают КРН медных сплавов, чувствительных к этому виду коррозии.  [c.330]

В пресных водах часто применяют медь, мюнц-металл и адмиралтейскую латунь (ингибированную). В солоноватой или морской воде используют адмиралтейскую латунь, медно-никелевые сплавы, содержащие 10—30 % Ni, и алюминиевую латунь (22 % Zn, 76 % Си, 2 % А1, 0,04 % As). В загрязненных водах медноникелевые сплавы предпочтительнее алюминиевой латуни, так как последняя подвержена питтинговой коррозии. Питтинг на алюминиевой латуни может также наблюдаться в незагрязненной, но неподвижной морской воде.  [c.339]



Смотреть страницы где упоминается термин Медные коррозия : [c.13]    [c.247]    [c.73]    [c.141]    [c.181]    [c.193]    [c.277]    [c.337]    [c.344]    [c.344]    [c.284]    [c.305]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.6 ]



ПОИСК



1---медные

Борьба с коррозией трубок из медных сплавов поверхностей нагрева теплообменных аппаратов (конденсаторов, паровых подогревателей и др

Борьба с коррозией трубок из медных сплавов теплообменных аппаратов

Защита медных сплавов от коррозии в условиях проведения химических очисток теплообменных аппаратов Гронский, В. Л. Маклакова (Уральский филиал ВТИ)

Защита огневой стенки камеры сгорания, выполненной из медных сплавов, от высокотемпературной родородной коррозии

Конденсаторы медные, коррозия

Коррозия бериллия медных сплавов

Коррозия медных полых проводников

Коррозия медных сплавов

Коррозия трубных систем подогревателей и конденсаторов из медных сплавов

Медные сплавы коррозия в агрессивных среда

Нагреватели медные, коррозия

Покрытия, коррозия медные



© 2025 Mash-xxl.info Реклама на сайте