Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость сильная

Ув = О и k — 200, 400 и 800 тс/м. При k — = 200 тс/м и 7в = 0,0125 критическая скорость равна 53 м/с (кривая 4) вместо 16 м/с при 7в = О, однако запас устойчивости не превосходит 0,1, а при У = 20 м/с он близок к нулю. Если увеличить У до 0,05, то критическая скорость почти не увеличивается, а запас устойчивости сильно возрастает (кривая 5). При k = 800 тс/м и 7 = О (кривая 3), 7з = 0,05 и 7з = 0,1 (кривые б и 7) критические скорости практически одинаковы (1/кр = 33 м/с), но запас устойчивости и при 7в = 0,05 и при 7в = 0,1 примерно в 2 раза больше, чем при = 0.  [c.404]


В гл. 7 — 9 рассмотрены формы потери устойчивости цилиндрических и конических оболочек средней длины, характерные тем, что вмятины при потере устойчивости сильно вытянуты в направлении образующей. Ясно, что, при достаточно малом искривлении образующих форма потери устойчивости не < должна сильно измениться. В этой главе результаты гл. 7—9 распространяются на случай оболочек, близких к цилиндрическим и коническим. Глубина отклонения берется такой, чтобы его  [c.199]

Вышеназванные три вида устойчивости атмосферы принято делить на семь классов сильная неустойчивость, умеренная неустойчивость, слабая неустойчивость, безразличное (нейтральное) состояние, слабая устойчивость, умеренная устойчивость, сильная устойчивость.  [c.36]

Благодаря своему малому удельному весу магний находит все большее применение в промышленности, однако, низкая коррозионная устойчивость сильно ограничивает возможность его использования.  [c.109]

Критерий (5.4) применялся также к оценке пределов устойчивости сильной детонации и слабой дефлаграции (К. И. Щелкин, 1959). Особенно интересен случай слабой дефлаграции. Он позволяет оценить границу устойчивого горения в техническом устройстве, например в гипотетической камере ракетного двигателя, работающего в режиме индукции. Под режимом индукции здесь понимается горение, при котором прогретый газ воспламеняется после истечения периода индукции химической реакции, зависящей от температуры по закону Аррениуса. Критерий, который будет  [c.387]

Сразу же возникает вопрос действительно ли существует некоторая граница, отделяющая островки устойчивости от области неустойчивости Из общих соображений можно заключить, что траектория не может быть и устойчивой, и неустойчивой в одно и то же время. Поэтому поставленный вопрос вырождается в следующий не могут ли малые островки устойчивости сильно повлиять на общую картину движения во всем фазовом пространстве и ликвидировать стохастичность Строгой теории преобразования (1.9) не существует. Трудности в ее построении как раз и связаны с тем, что островки устойчивости имеют конечную ме-  [c.78]

Плазменный метод ускорения заключается в применении для ускорения ионов электрич. поля волн в плазме. При прохождении мощных электронных пучков сквозь плазму создаются условия, при к-рых часть энергии пучка расходуется на создание плазм, волны. Чтобы обеспечить регулярность этой волны, используется предварит, небольшая модуляция электронного пучка внеш. эл.-магн. полем. Изменяя частоту и фазу модуляции, а также плотность плазмы, можно управлять возникающей волной и сделать её пригодной для ускорения ч-ц. Осн. трудность метода состоит в эфф. возбуждении устойчивой сильной плазменной волны, имеющей требуемые для захвата и ускорения ч-ц параметры.  [c.299]


Введение менее 14,5% кремния оказывается недостаточным для получения высокой коррозионной устойчивости (рис. 255 и 256). Содержание кремния выше 18%, не давая дальнейшего повышения коррозионной устойчивости, сильно ухудшает механические свойства чугунов, так как приводит к сильному возрастанию хрупкости. Содержание кремния в твердом растворе Fe — Si в 14,3 вес.% соответствует 25 атомн.7о кремния в сплаве, т. е. соответствует содержанию Vs атомных долей кремния.  [c.524]

Нитриды образуют металлы переходных групп (железо, хром, марганец, ванадий, вольфрам, молибден, титан). Высокая твердость азотированного слоя объясняется большой дисперсностью образующихся нитридов, тем больше, чем больше их термическая устойчивость, последняя же тем сильнее, чем меньше электро-  [c.332]

Если от детали требуется высокая устойчивость против истирания и не предъявляются повышенные требования относительно прочности, то их изготавливают из указанных простых и дешевых углеродистых сталей. Глубину цементации выбирают в зависимости от условий работы деталей . После цементации проводят закалку в воде и затем отпуск при 150—180°С. При закалке в воде цементуемые детали довольно сильно деформируются. В табл. 31 приведены механические свойства углеродистых сталей.  [c.379]

Повышенная коррозионная стойкость металлов может быть обусловлена различными причинами, в частности термодинамической устойчивостью, т. е. инертностью металла, отсутствием в электролите деполяризатора, затрудненностью доставки деполяризатора к поверхности металла, сильным торможением про-  [c.302]

Сг (1% С связывает около 10% Сг). Таким образом происходит сильное обеднение твердого раствора хромом, и в большинстве случаев содержание свободного хрома в высокохромистых чугунах не выходит за пределы первого порога устойчивости. Этим объясняется сравнительно невысокая коррозионная стойкость этих чугунов по сравнению с высокохромистыми сталями. При увеличении содержания хрома свыше 35— 36% твердость высокохромистых сплавов значительно повышается, что ухудшает их обрабатываемость. Кроме того, при содержании хрома свыше 40% эти чугуны становятся хрупкими вследствие выделения при медленном охлаждении б-фазы (интерметаллического соединения РеСг).  [c.243]

Эта комбинация сплавов также широко применяется в промышленности. Термопара типа К имеет высокую чувствительность и устойчива к окислению вплоть до 1260 °С, но непригодна для работы в восстановительной атмосфере. Она успешно применяется вплоть до 4 К и так же, как и тип Е, отличается низкой теплопроводностью обоих электродов. Главное преимущество термопары типа К по сравнению с другими термопарами из неблагородных металлов состоит в значительно лучшей стойкости к окислению при высоких температурах. Однако уже в слабо восстановительной атмосфере на поверхности положительного электрода образуется зеленая окись хрома, что сопровождается заметным изменением термо-э.д.с. Этот эффект сильнее всего проявляется при температурах от 800 до 1050 °С. Термопара типа К. также очень чувствительна к следам серы и углерода в атмосфере.  [c.288]

Легирующие элементы, повышая устойчивость аустеиита, резко снижают критическую скорость закалки. Так, при введении 1 % Сг в сталь с 1 % С критическая скорость закалки уменьшается в 2 раза, а при введении 0,4 % Мо от 200 до 50 С/с.Сильно снижают критическую скорость закалки марганец и никель и в меньшей степени вольфрам. Для многих легированных сталей критическая скорость закалки снижается до 20—30 С с и более. Кобальт является единственным легирующим элементом, понижающим устойчивость аустенита и повышающим критическую скорость закалки.  [c.183]

Алюминиевые сплавы противостоят коррозии в сухой атмосфере, устойчивы против действия щелочей и слабых растворов кислот, но подвержены коррозии в условиях влажного (особенно морского) воздуха неустойчивы против действия сильных кислот, мягки НВ 60—130). В интервале 0-100°С коэффициент линейного расширения а = (20-1-26)10" .. Модуль упругости Е = 7000 7500 кгс/мм .  [c.180]

Ситаллы являются превосходными диэлектриками и обладают высокой стойкостью против химических агентов, превосходя в этом отношении пластики, коррозионностойкую сталь и титановые сплавы. Они устойчивы против действия самых сильных щелочей и кислот (за исключением плавиковой).  [c.191]


Назначение — холодные штампы высокой устойчивости против истирания, не подвергающиеся сильным ударам, и толчкам волочильные доски, глазки для калибрования пруткового металла под накатку резьбы, гибочные и формовочные штампы, сложные секции кузовных штампов, матриц и пуансонов вырубных и просечных штампов, штамповки активной части электрических машин и т. д.  [c.386]

Аварийные ситуации в энергосистемах. Динамические характеристики блоков, работающих в объединенных системах, играют особую роль в связи с задачами регулирования энергосистем по предотвращению аварийных ситуаций, нарушающих их статическую устойчивость. Сильные возмущения в энергосистеме могут возникать при резких изменениях нагрузки в приемных или передающих частях энергообъединения, а также в случаях аварий на его удаленных участках. В принципе  [c.57]

Если по какой-либо причине у.меньшится статическая устойчивость, то рулев-ой момент для балансировки в новом положения потребуется меньший. Но когда к самолету приложен меньший момент, то он медленнее переходит в новое состояние ра вновееия. Отсюда приходим к важному выводу чем выше статическая устойчивость самолета, тем меньше запаздывание управления, самолет лучше ходит за рулями . Это можно пояснить и иначе чем выше статическая устойчивость (сильнее пружины на рис. 11.18), тем меньше период колебаний, а следовательно, меньше время, затрачиваемое на эти колебания.  [c.295]

Так как отдельные элементы оборудования конденсат-но-питательного тракта выполняются из медных сплавов, то, создавая щелочную среду с помощью аммиака, необходимо соблюдать осторожность в отношении его дозирования. Увеличение концентрации свыше 500 мкг/л приводит к усилению коррозии латунных трубок конденсаторов турбин и подогревателей низкого давления. Если в чистой воде и в растворах нейтральных солей медь и ее сплавы кор-розионно-устойчивы, то в растворах аммиака и аммонийных солей их устойчивость сильно понижена. Это объясняется уменьшением анодной поляризации в связи с образованием комплексных ионов типа [2п(ЫНз) ]2+ и [Си(ЫНз)л] +, где п может достигать шести. Катодным деполяризатором для меди, цинка и их сплавов является кислород. Чем больше концентрация в воде кислорода и аммиака, тем быстрее протекает коррозия этих сплавов. Внешне этот вид коррозии характеризуется обесцинковани. М латуней и появлением трещин в местах, где имеются внутренние и внешние растягивающие напряжения.  [c.72]

Таким же путем были получены пересыщенные твердые растворы на бинарных сплавах А1—V, А1—Мо, А1—W [20 ]. В табл. 92 приведены данные Н. И. Варича и его сотрудников [12, с. 111— 114] о максимальном пересыщении твердых растворов двойных сплавов. Наибольшее пересыщение достигнуто на сплаве А1—Сг. Устойчивость сильно пересыщенного твердого раствора в сплаве А1—Сг значительно повышается введением третьего компонента циркония или тантала [12, с. 111—114].  [c.292]

При проектировании трехслойных панелей, особенно с маложестким заполнителем и тонкими внешними слоями, необходимо илиеть в виду, что сжатые внешние слои таких панелей могут терять устойчивость и отрываться от заполнителя (при некоторых технологических несовершенствах — например, при волнистости внешних слоев — склейка внешних слоев с заполнителем может разрушаться даже до потери устойчивости внешними слоями). При расчете внешних слоев на устойчивость или при расчете заполнителя и его склейки с внешними слоями на прочность, внешние слои следует рассматривать как пластинки на упругом основании (роль основания играет заполнитель). Понятно, что на величину критической нагрузки местной потери устойчивости сильно влияет модуль упругости заполнителя в направлении, нормальном к внешним слоям. При этих расчетах имеет существенное значение учет взаимных смещений внешних слоев, связанных с изменением расстояния между этими слоями.  [c.246]

Наконец, устойчивость режима течения может оказаться сильно зависящей от геометрии возмущения. В то время как для ньютоновских жидкостей можно сделать некоторые общие выводы, касающиеся геометрии наиболее оп<чсных в смысле развития  [c.298]

Имея в виду прямые данные Л. 315], подчеркнем следующее а) движение слоя, как правило, проходило в сильно стесненных условиях (табл. 9-2), характерных для D/( T< 13-Г-25 б) Исл=120 см/мин при Д, = 75н-120 мм соответствует Рг< л = 25, что близко к нижней границе связанного движения слоя Ргнр в) продувка слоя проходила вблизи предела его устойчивости, т. е. при Re, близких к числу Рейнольдса начала псевдоожижения ReH.ii -  [c.286]

Степень переохлаждения велика,., Поэтому образование центров кристаллизации возможно не только на границах, но и внутри зерен, при этом критический размер зародышей новой фазы будет малым, а число возникающих центров кристаллизации велико. Растущие кристаллики р-фазы не могут принять устойчивой сферической формы, так как такие сферические образования вызывали бы в упругой среде значительные внутренние напряжения. Поэтому кристаллики приспосаб-, иваются, приобретают пластинчатую форму. Действительно, кристаллики новой формы, выделяющиеся из сильно переохлажденных твердых растворов, имеют очень малые размеры. Толщина их составляет несколько атомных слоев, а протяженность — несколько десятков или сотен атомных слоев. Однако такой тонкий кристаллик самостоятельно существовать не может, он может существовать лишь приклеенным к крупному кристаллу (точнее внутри его).  [c.142]

Все легирующие элементы уменьшают склонность аустенит-ного зерна к росту. Исключение составляют марганец и бор, которые способствуют росту зерна. Остальные элементы, измельчающие зерно, оказывают различное влияние никель, кобальт, кремний, медь (элементы, не образующие карбидов) относительно слабо влияют на рост зерна хром, молибден, вольфрам, ванадир , титан сильно измельчают зерно (элементы перечислены в порядке роста силы их действия). Это различие является прямым следствием различной устойчивости карбидов (и нитридов) этих элементов. Избыточные карбиды, не растворенные в аустените, препятствуют росту аустенитного зерна (см. теорию барьеров, гл. X, п. 2). Поэтому сталь при наличии хотя бы небольшого количества нерастворимых карбидов сохраняет мелкозернистое строение до весьма высоких температур нагрева.  [c.358]


Влияние состава газовой среды на скорость коррозии металлов велико, специфично для разных металлов и изменяется с температурой, как это видно, например, из данных рис. 86. Никель, относительно устойчивый в средеОа, Н20,С02,очень сильно корродирует в атмосфере SO . Медь наиболее быстро корродирует в атмосфере кислорода, но устойчива в атмосфере SOj-Хром же обладает высокой жаростойкостью во всех четырех атмосферах.  [c.128]

Хотя между коррозионной стойкостью металлов, которая характеризуется скоростью протекания термодинамически возможных электрохимических коррозионных процессов, и их термодинамическими характеристиками [например, (1 л1Лобр1 и наблюдается некоторое соответствие (щелочные и щелочноземельные металлы наименее устойчивы, а благородные металлы наиболее устойчивы), однако между ними нет простой однозначной зависимости. Металл, нестойкий в одних условиях, в других условиях часто оказывается стойким. Это обусловлено тем, что протекание термодинамически возможного процесса бывает сильно заторможено образующимися вторичными труднорастворимыми продуктами коррозии, пассивными пленками или какими-либо другими факторами. Так, термодинамически весьма неустойчивые Ti, А1 и Mg (см. табл. 28) в ряде сред коррозионностойки благодаря наступлению пассивности.  [c.324]

Интегрирование системы конечно-элементных уравнений (1.35) можно осуществить различными способами [55, 177, 178], наибольшее применение среди которых получили методы центральных разностей, Вилсона, Галеркина, Ньюмарка. Нельзя формально подходить к использованию того или иного метода,, так как каждый из них имеет свои сильные и слабые стороны, которыми и определяется область их рационального применения. Так, применение центральных разностей имеет несомненное преимущество при использовании сосредоточенной (диагональной) матрицы масс, однако устойчивость его зависит от выбора шага интегрирования во времени Ат. Выбирая безусловно устойчивые и более точные двухпараметрические методы интегрирования Ньюмарка и Галеркина, мы значительно увеличиваем время счета. Оптимально и достаточно просто реализуемое интегрирование уравнения (1.35) можно провести с помощью модифицированной одношаговой процедуры Вилсона по двум схемам, отличающимся числом членов разложения в ряд Тейлора функций (т) , (й т) , ы(т) в момент времени т [7].  [c.25]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]

Наступление пассивного состояния хромистых сталей подчиняется правилу п/8 порогов устойчивости Таммана, чем и объясняется то, что хромистые стали с небольщим содержанием хрома (менее /в атомной доли) не являются в большинстве случаев устойчивыми в сильно агрессивных средах.  [c.214]

Повышение температуры нагрева под закалку (или увеличение длительности нагрева) приводит к растворению карбидов, укрун-нению зерна и гомогенизации аустенита. Это способствует нош.ннению устойчивости переохлажденного аустенита, особенно и р шоне температур перлитного превращения, и уменьшению критической скорости закалки и увеличению нрокаливаемости стали. Однако чрезмерное повышение температуры нагрева для закалки увеличивает количество остаточного аустенита (рис. 128, в), что снижает твердость стали (рис. 128, б), приводит к сильному росту зерна и увеличению деформации обрабатываемых изделий.  [c.202]

Ле[ироваииые стали вследствие более высокой устойчивости переохлажденного аусте-иита и соответственно меньшей критической скорости охлаждения (рис. 129, Vk и Ик) прокаливаются на значи-те П)По ббльи1ую глубину, чем углеродистые. Сильно повышают ирокаливаемость марганец, хром, молибден и малые ирисадки бора  [c.208]


Смотреть страницы где упоминается термин Устойчивость сильная : [c.61]    [c.230]    [c.347]    [c.55]    [c.766]    [c.766]    [c.353]    [c.552]    [c.82]    [c.351]    [c.194]    [c.209]    [c.281]    [c.78]    [c.208]    [c.113]   
Математические методы классической механики (0) -- [ c.105 ]



ПОИСК



Перекладывание структурно устойчивый (сильно)

Преобразование галилеево сильно устойчивое

Преобразование сильно устойчивое

Сильная эллиптичность и устойчивость

Среды Устойчивость в слабых и сильных



© 2025 Mash-xxl.info Реклама на сайте