Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термический цикл сварки и структура сварного соединения

Термический цикл сварки и структура сварного соединения  [c.28]

Рассмотрим термический цикл и структуру сварного соединения при дуговой сварке низкоуглеродистой стали (рис. 18).  [c.29]

При дуговой сварке механические свойства металла сварного шва и прочность соединения в целом зависят от марки титана, марки присадочной проволоки, способов и режимов сварки и могут быть доведены до показателей основного металла. Титановые а-, псевдо-а- и р-сплавы хорошо свариваются, малочувствительны к изменению термических циклов сварки и могут свариваться в широком диапазоне режимов. Сварные соединения из низколегированных а-сплавов почти равнопрочны основному металлу. С повышением легирования различие в прочности и пластичности сварного соединения и основного металла возрастает. Для стабилизации структуры и снятия остаточных напряжений применяют для а-сплавов послесварочный отжиг.  [c.476]


При анализе факторов, определяющих работоспособность сварного соединения при высоких температурах, необходимо прежде всего рассмотреть условия образования последнего. Это рассмотрение особенно важно потому, что обусловленное сваркой изменение структуры и свойств отдельных зон сварного соединения, во время эксплуатации при высоких температурах сказывается значительно сильнее, чем при комнатной температуре. Вследствие нестабильности структурного состояния различных зон сварного соединения интенсивность развития в них диффузионных процессов, определяющая степень разупрочнения при высоких температурах будет выше по сравнению с основным металлом, что приводит в зависимости от уровня температуры и длительности нагружения, к повышению или снижению прочности. Следует также отметить, что в высокотемпературных установках используются преимущественно легированные стали, обладающие повышенной реакцией на термический цикл сварки и поэтому в наибольшей степени изменяющие свои свойства.  [c.34]

ТЕРМИЧЕСКИЕ ЦИКЛЫ СВАРКИ, ПРЕДОПРЕДЕЛЯЮЩИЕ СТРУКТУРУ И СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ  [c.13]

ВЛИЯНИЕ ТЕРМИЧЕСКОГО ЦИКЛА СВАРКИ НА СТРУКТУРУ И СВОЙСТВА МЕТАЛЛА В СВАРНЫХ СОЕДИНЕНИЯХ  [c.330]

В главе VII было подробно рассмотрено воздействие термического цикла сварки на структуру и свойства сварных соединений. Поэтому напомним только, что при сварке низколегированных конструкционных сталей как с невысоким, так и с повышенным содержанием углерода, а также среднелегированных и высоколегированных конструкционных сталей, склонных к закалке под воздействием термического цикла сварки, в зависимости от величины погонной энергии может наблюдаться либо резкая подкалка околошовной зоны, сопровождающаяся повышением твердости и снижением пластичности (при малых значениях погонной энергии), либо интенсивный рост зерна, вызывающий снижение пластичности металла (при чрезмерно больших значениях погонной энергии). Как в первом, так и во втором случае в околошовной зоне могут образовываться трещины.  [c.501]

При двухдуговой сварке каждый электрод присоединен к отдельному источнику постоянного, переменного тока, или дуги питаются разнородными токами. Образовавшиеся две дуги могут гореть в одном газовом пузыре. Электроды располагаются перпендикулярно свариваемой поверхности или наклонно в плоскости, параллельной направлению сварки. При отклонении первой дуги на угол а) растет глубина проплавления этой дугой при отклонении второй дуги на угол аг увеличивается ширина шва, определяемая этой дугой, благодаря чему можно избежать подрезов по кромкам шва. Сварка по такой схеме дает возможность резко повысить скорость, а значит, и производительность процесса. При увеличенном расстоянии между электродами дуги горят в раздельных сварочных ваннах. Обычно в таком случае электроды располагаются перпендикулярно поверхности изделия. Сварка по этой схеме позволяет уменьшить вероятность появления закалочных структур в металле шва и околошовной зоны. Это объясняется тем, что первая дуга не только формирует шов, но и выполняет как бы предварительный подогрев, который уменьшает скорость охлаждения металла шва и околошовной зоны после прохода второй дуги. Вторая дуга частично переплавляет первый шов и термически обрабатывает его. Изменяя сварочный ток каждой дуги и расстояние между ними, можно получать требуемый термический цикл сварки и таким образом регулировать свойства металла сварного соединения.  [c.210]


Во многих случаях, в особенности при сварке легированных сталей и различных сплавов, требуется прежде всего получение определенных механических свойств и структуры металла около-шовной зоны и шва, которые зависят от длительности пребывания металла выше определенной температуры, скорости охлаждения в необходимом интервале температур, повторного нагрева и многих других особенностей термического цикла сварки (см. разд. IV). Поэтому оценка эффективности процесса сварки по энергетическим критериям часто оказывается второстепенной. Однако для сталей, мало чувствительных к воздействию термического цикла сварки, оценка эффективности различных режимов сварки по энергетическим затратам необходима. Следует различать сварные соединения двух основных крайних типов соединения, в которых преобладает наплавленный металл (заштрихованные участки на рис. 7.20, вверху), и соединения, образуемые преимущественно в результате расплавления основного металла (рис. 7.20, внизу). Для последнего типа соединений, например стыкового, тепловую эффективность процесса целесообразно характеризовать удельной затратой количества теплоты на единицу площади свариваемой поверхности  [c.232]

Еще один подход к выявлению дефектов рассматриваемых сварных швов основан на том, что эти дефекты возникают в случае нарушения технологии сварки. Но при этом и структура металла сварного соединения отличается от той, которая возникала бы, если бы рел<имы сварки были выдержаны в соответствии с заданными условиями. Поэтому, наблюдая за структурой соединения, можно с большой достоверностью предсказывать вероятность появления дефектов. Этот способ особенно эффективен при грубых нарушениях термического цикла сварки. Хуже выявляются дефекты, возникающие при нарушениях режима осадки. В качестве измеряемой характеристики можно использовать затухание УЗ-колебаний в сварном шве, например, при прозвучивании его по зеркально-теневой схеме [32]. Если разность амплитуд сигналов, регистрируемых при прозвучивании по этой схеме основного мелкозернистого металла и металла шва, мала (не превышает 4 дБ), то сварное соединение бракуется. Если же эта разность достигает 10 дБ и более, следовательно, термический цикл не был нарушен, что привело к достаточному укрупнению зерна, и появление дефектов маловероятно.  [c.358]

Предварительную оценку влияния термического цикла сварки на изменение структуры и свойств свариваемого металла проводят путем специальных исследований, предусматривающих нагрев и охлаждение образцов по программе с заданными скоростями и механические испытания после такой обработки (например, метод ИМЕТ-1). Испытания позволяют имитировать сварочные термические циклы любого участка сварного соединения и выявлять их воздействие на структуру и свойства металла.  [c.52]

На рис. 6.2 слева показаны поперечное сечение стыкового сварного соединения при однослойной сварке низкоуглеродистой стали, кривая распределения температур по поверхности сварного соединения в момент, когда металл шва находится в расплавленном состоянии, и структуры различных участков зоны термического влияния шва после сварки, образованные в результате действия термического цикла сварки. Эта схема - условная, так как кривая распределения температур по поверхности сварного соединения во время охлаждения меняет свой характер.  [c.259]

Высокоосновные флюсы и шлаки, рафинируя металл шва и иногда модифицируя его структуру, повышают стойкость против горячих трещин. Механизированные способы сварки, обеспечивая равномерное проплавление основного металла по длине шва и постоянство термического цикла сварки, позволяют получить и более стабильные структуры на всей длине сварного соединения  [c.362]

Двухфазные (а + Р)- и псевдо-р-сплавы чувствительны к термическому циклу сварки. При больших скоростях охлаждения в результате распада р-фазы в околошовной зоне сварного соединения образуются структуры, обладающие низкой пластичностью. Для получения оптимального соотношения характеристик прочности и пластичности, а также повышения термической стабильности сварных соединений применяют после сварки полный отжиг или термомеханические виды обработки.  [c.476]


Термический цикл сварки, оказывая теплофизическое воздействие на металл, формирует его физико-механическое состояние, определяет неоднородность металла в зонах сварного соединения различие структуры, химического состава, напряженного состояния. Повышенная неоднородность сварных соединений при одновременном воздействии коррозионной среды, а также остаточных и эксплуатационных напряжений служит причиной зарождения очагов коррозионно-механического разрушения. Физико-механическое состояние определяет различие в коррозионном и электрохимическом поведении зон сварного соединения, которое может быть оценено значениями электродных потенциалов локально в каждой зоне. Проведенные исследования позволили установить, что в большинстве случаев шов является более отрицательным (менее благородным), чем основной металл, а это значит, что в трубопроводе в образовавшемся коррозионном гальваническом элементе шов — основной металл именно шов будет подвергаться анодному растворению. Так происходит, например, у сварных соединений, выполненных электродами с фтористокальциевым покрытием. Однако, как показали эксперименты, при некоторых условиях возможно изменение значения неоднородности, а также изменение полярности зон сварного соединения.  [c.31]

Тепловая сторона свариваемости определяется реакцией основного металла на тепловое воздействие термического цикла сварки. Поскольку термические циклы отдельных участков околошовной зоны различны (рис. 2-3), возникает неоднородность структуры и механических свойств сварного соединения.  [c.32]

Следовательно, получение сварных соединений, однородных по химическому составу и структуре, весьма желательно как в отношении эксплуатационной надежности, так и надежности контроля качества, в частности магнитной дефектоскопии сварных соединений. Получение сварных соединений, однородных по составу и структуре, в некоторой степени можно обеспечить за счет применения соответствующих сварочных материалов и соблюдения определенного термического цикла сварки. Идеальным выполнением этого условия является использование сварочных проволок того же состава, что и основной металл. Однако условия технологического процесса сварки и природа образования сварного соединения таковы, что почти всегда получаются сварные соединения, в которых образуется химическая и структурная неоднородность. Так, например, с целью предупреждения образования кристаллизационных трещин, как правило, применяют сварочные проволоки  [c.72]

Изменение температуры в процессе сварки в данной точке сварного шва или околошовной зоны называется термическим циклом сварки. Термический цикл зависит от режима сварки. Регулируя скорости нагрева и остывания металла подбором режима сварки, можно влиять на формирование структуры шва и околошовной зоны и, следовательно, получить требуемое качество сварного соединения.  [c.82]

Ранее было отмечено, что интенсифицировать пластическую деформацию в приконтактной зоне можно термоциклированием. На рис. 4.18 приведена схема термического цикла сварки, а на рис. 4.19 — данные о формировании структуры в зоне соединения. Уже через 5 мин после начала сварки (см. рис. 4.19) образуются общие зерна, а через 10 мин в зоне соединения отсутствуют дефекты первого рода и у сварных соединений а = 0,8. В основном металле в рассматриваемых условиях происходит полигонизация, развивающаяся в а-области с ОЦК-решеткой.  [c.141]

Для оценки характера влияния сварки на свойства сварного соединения важно установить характер термических циклов точек и влияние этих циклов на структуру и свойства металла.  [c.153]

К структуре зоны термического влияния, а следовательно и к термическим циклам нагрева и охлаждения при сварке, предъявляются различные требования, которые зависят и от материала и от условий эксплуатации изделия. В результате несоблюдения необходимых режимов структура шва и зоны влияния может значительно ухудшиться, что приведет к снижению качества сварных соединений. Так, в малоуглеродистой стали существенного изменения свойств у зоны термического влияния обычно не происходит. Низколегированные и углеродистые конструкционные стали в результате слишком быстрого охлаждения и подкалки иногда значительно снижают пластичность. В закаленных сталях (перлитного и мартенситного класса) при излишне замедленном охлаждении может произойти отпуск зоны термического влияния. Длительный нагрев высоколегированных хромистых сталей ферритного класса приводит к укрупнению их зерна, снижению пластических свойств и коррозионной стойкости. Хромоникелевые стали аустенитного класса нельзя длительное время перегревать выше температуры распада аустенита, так как при этом нарушается однородность аустенитной структуры и теряется коррозионная стойкость.  [c.154]

Следует отметить, что во всех участках ЗТВ процессы структурно-фазовых превращений, состав, характеристики конечной структуры, а следовательно,и механические свойства сварных соединений в значительной степени зависят от параметров термических циклов сварки н термообработки, химического состава и исходного структурного состояния сталей.  [c.73]

Одним из важных направлений в исследовании свариваемости сплавов титана является изучение фазовых превращений, изменения структуры и свойств в условиях непрерывного нагрева и охлаждения при сварке, а также замедленного разрушения и образования холодных трещин в сварных соединениях. Реакция сплавов титана на термический цикл сварки в существенной мере определяет возможность их применения для сварных конструкций. Разнообразие существующих способов сварки и высокий уровень совершенства их технологии и автоматизации значительно расширили области использования титана и его сплавов в ответственных сварных изделиях и конструкциях авиационной, ракетной и судостроительной промышленности, а в последние годы и в химическом, энергетическом и общем машиностроении.  [c.7]


Основные проблемы повышения конструктивной прочности сварных изделий из перлитных и мартенситных сталей и а- и а+р-сплавов титана связаны с высокой склонностью этих материалов к образованию холодных трещин при сварке и задержанному разрушению, а также с понижением пластичности и прочности соединений в сравнении с основным металлом. В ряде случаев известные методы упрочнения за счет легирования и термической обработки не позволяют удовлетворительно решать эту проблему без специальных методов регулирования структуры и свойств сварных соединений в процессе сварки. Указанные стали и сплавы титана обладают повышенной реакцией на термический цикл сварки, в результате чего в околошовной зоне, шве и других участках сварных соединений происходят неблагоприятные изменения структуры и свойств. К основным явлениям, лимитирующим повышение конструктивной прочности сварных изделий из этих материалов, следует отнести развитие химической и физической неоднородности в сварных швах (внутрикристаллическая неоднородность, полигонизация), в околошовной зоне (рост зерна, перегрев) и на границе сплавления, образование хрупких закалочных структур в шве и околошовной зоне, разупрочнение основного металла в участках высокого отпуска или рекристаллизации обработки и т. д.  [c.8]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]

Для оценки влияния термического цикла сварки па структуру и свойства различных зон сварного соединения рассмотрим нсев-добинарную диаграмму состояний Fe — С — Si, связав ее с распределением температур в шве и околошовной зоне (рис. 152). Шов представляет собой металл, полностью расплавлявшийся. В зависимости от скорости охлаждения структура его будет представлять собой белый или серый чугун, с различным количеством структурно-свободного углерода.  [c.325]

Н. Ф. Лашко [106], в сплавах, содержащих менее 3% (по массе) р-стабилизаторов. При повышении концентрации р-стабилизирующих элементов заметно снижается пластичность и вязкость сварных соединений, увеличивается склонность к хрупкости в металле шва и око-лошовной зоны, что связано с образованием при термическом цикле сварки в структуре шва мартенсит-ной а -фазы.  [c.333]

Прочность сварных соединений, как правило, близка к прочности основного метал- -ла. Пластичность сварных соединений зависит От состава и структуры шва, а также от характера структурных превраш ений в околошовной зоне под влиянием термического цикла сварки. Литая структура шва понижает его пластичность, но ее можно повысить соответствующим выбором присадочного метал ла и последующей термической обработкой отжигом, закалкой со старением, неполным отжигом для снижения остаточных напряжений. Пластичность околошовной зоны существенно зависит от структуры сплава. Сплавы с -структурой (ВТ1, ВТ5), не изменяющие ее при сварке, а также сплавы с небольшим содержанием р-фазы (0Т4, ВТ4, ВТ20, АТ2, АТЗ, АТ4) имеют после сварки достаточную пластичность сварного соединения. Мартенситные титановые сплавы (ВТ6, ВТ14, ВТЗ-1) после сварки имеют низкую пластичность и подвергаются отжигу.  [c.103]

Рис. 18. Термический цикл и схема изменения структуры и свойств сварного соединения низкоуглеродистой стали при однопроходной сварке Рис. 18. <a href="/info/7448">Термический цикл</a> и схема <a href="/info/140482">изменения структуры</a> и <a href="/info/625555">свойств сварного соединения</a> <a href="/info/271628">низкоуглеродистой стали</a> при однопроходной сварке
Выявлены закономерности формирования структурь сварных соединений из жаропрочных хромомолибденовы> сталей типа 15Х5М, изучена кинетика фазовых и струю7р-ных превращений в околошовных зонах при регулированик термических циклов сварки.  [c.100]

Приводимые в некоторых литературных источниках методы расчетно-экспериментального определения режимов сварки основаны на изучении уже готовых сварных соединений (определение F и F , уо и у ). Для определения химического состава шва нужно также учесть металлургические процессы (легирование или угар тех или иных элементов). В литературе они приводятся в общем виде, на практике же могут значительно различаться. Таким образом, имея экспериментальный шов, проще и точнее можно провести химический анализ металла. При этом, зная химический состав металла шва и термический цикл сварки, можно судить о его механических и других свойствах, а с учетом теплового цикла в ЗТВ и о свойствах сварного соединения в целом. Структура металла и его свойства определяются с помощью термокинетических и изотермических диаграмм распада аустенита. Для высоколегированных, хромоникелевых и аустенитных сталей фазовый состав металла можно приблизительно определить по диаграмме Шеффлера. Более подробные сведения приво-  [c.241]

Большинство неразъемных соединений получают сваркой плавлением с использованием мощного теплового источника — электрической дуги. При этом основной металл и электрод плавятся, образуя жидкую ванну. Температуры сварочной ванны и примыкающего металла достигают высоких значений. После кратковременного нагрева следует достаточно быстрое охлаждение, т.е. возникает своеобразный термический цикл, который определяет строение сварного шва и околошовной зоны. При сварке углеродистой стали структура околошовной зоны (зоны термического влияния) формируется в соответствии с диаграммой состояния Fe — ГезС (рис. 10.2). Шов имеет структуру литого металла, которая образуется в процессе первичной кристаллизации. Из-за направленного отвода теплоты кристаллы здесь приобретают столбчатую форму, вытянутую перпендикулярно линии сплавления.  [c.288]


Основной металл и зона термического влияния сварных соединений имеют феррито-перлитную структуру. Более сложная структура металла сварного шва представляет собой, в основном, крупные первичные кристаллы размером 80-90 мкм со структурой псевдоэв-тектоида во внутренних объемах (рис, 5.40, а). Нередко эти крупные кристаллы окружены мелкими (с = 5 -ь 10 мкм) зернами феррита. Кроме того, наблюдаются участки мелкозернистой структуры, характерные для зон сварного шва, испытавших термический цикл сварки при последующих проходах (рис. 5.40, б). В отдельных участках шва обнаружены крупные зерна с видманштеттовой структурой, отороченные цепочкой зерен феррита (объемная зона 24%) (рис. 5.40, в). Отпуск практически не изменяет структуру сварных соединений. В участках отпущенного сварного шва (рис. 5.40, г) с вытянутыми в плоскости шлифа кристаллитами твердость соответствует Нц 244-254, а в участках шлифа с мелкозернистой структурой - Нр 234-254.  [c.257]

Низколегированная низкоуглеродистая конструкционная сталь по реакции на термический цикл сварки мало отличается от обычной низкоуглеродистой стали. Различие в основном состоит в несколько большей склонности к образованию закалочных структур в металле шва и околошовной зоны при повышенных скоростях охлаждения. Дополнительное легирование стали марганцем, кремнием и другими элементами способствует образованию в сварных соединениях закалочных структур. Поэтому режим сварки большинства этих сталей ограничивается более узкими пределами погонной энергии, чем при сварке низкоуглеродистой стали. Обеспечение равнопрочности металла шва с основным металлом достигается главным образом за счет легирова-  [c.106]

Хорошие литейные свойства чугуна, простота и невысокая стоимость изготовления изделий из него, износостойкость, надежная работа в условиях повышенныхтем-аератур и знакопеременных нагрузок позволяют широко использовать чугун в качестве конструкционного материала. Однако выпускаемые в настоящее время чугуны характеризуются пониженной свариваемостью, обусловленной повышенной склонностью к образованию трещин из-за низкой его прочности и пластичности и образования хрупких структур при сварке в металле шва и околошовной зоны при повышенных скоростях охлаждения. Трещины в металле сварного соединения могут возникнуть от неравномерного нагрева и охлаждения, которые характерны для термического цикла сварки, литейной усадки металла шва, жесткости свариваемых изделий. Наиболее широко распространены и хорошо разработаны процессы сварки деталей из серного чугуна. Существуют три основных, наиболее распространенных способа сварки чугуна с предварительным нагревом (горячая сварка), без предварительного нагрева (холодная сварка), пайкосварка.  [c.130]

Современное термическое оборудование позволяет осуществлять локальный нагрев сварных соединений с автоматически.м контролем параметров процесса сварки и термообработки. В связи с этим было изучено влияние температуры изотермической выдержки на стадии охлаждения термического цикла сварки на фазовый состав структуры. Исследование проводили на образцах-имитаторах. Образцы стали 10Г2ФР с помощью установки токов высокой частоты нагревали по — 1350 °С и охлаждали до 900 °С (т = 45 с, %" — 80 с). Дальнейшее охлаждение отдельных серий образцов осуществляли по различным режимам с тем, чтобы в соответствии с диаграммой фазовых превращений обеспечить распад аустенита преимущественно в ферритной, перлитной, бейнитной и мартенситной областях (рис. 5.11).  [c.98]

Согласно требованиям, предъявляемым к чугунным изделиям, желательно, чтобы сварное соединение было однородного состава и свойств. Этим требованиям в наибольшей степени отвечает сварка с любым способом нагрева, но обеспечивающая в наплавленном металле структуру серого чугуна. При сварке чугуна применяют газовый и электродуговой нагревы. Учитывая теплофизические свойства газового пламени (раздельное тепловло-жение в присадочный и основной металлы), гибкость управления технологическими и тепловыми процессами, газопламенные методы широко применяют для устранения дефектов в чугунных деталях, так как чугун является материалом очень чувствительным к термическому циклу сварки. Газопламенные способы можно применять для устранения разнообразных дефектов. Основным ограничением того или иного способа является размер дефекта. Из-за ограниченной мощности пламени наиболее эффективно применение этих способов при устранении мелких дефектов. Так, если масса наплавленного металла для устранения дефектов превышает 2—3 кг, указанные способы экономически нецелесообразны и необходимо применение электродуговых процессов.  [c.18]

Свойства сварных соединений зависят от металла шва и свойств различных зон термического влияния. Для подавляющего большинства сталей удается получить такой химический состав металла шва и его структуру, которые обеспечивают прочность и пластичность металла шва не ниже, а во многих случаях и выше тех же характеристик основного металла. Как правило, этого удается достигнуть непосредственно после сварки, а в некоторых случаях — после термической обработки сварной конструкции. Свойства околошовной зоны в основном зависят от реакции основного металла на термический цикл сварки на них крайне мало влияет состав металла шва. В большинстве случаев, в особенности для сложнолегированных сталей, чувствительных к термическому циклу сварки, задача обеспечения необходимых механических свойств сварных соединений сводится к достижению необходимых свойств металла в зо-  [c.99]

Понятие работоспособности сварных соединений при высоких температурах включает в себя много сторон поведения металлов и нуждается в дифференцированных формулировках. Многочисленную группу критериев составляют такие, которые характеризуют реакцию металла на термическое воздействие при св ке. Это главным образом критерии качественные такие, как склонность стали к росту зерна и охрупчиванию, к закалке при конкретном термическом цикле сварки, склонность к динамическому деформационному старению, к появлению зон отпуска (мягких прослоек), появлению структур, слабо сопротивляющихся воздействию коррозионных сред, и рад других. Вввду того, что точных количественных требований о допустимости или недопустимости различных изменений свойств, как правило, не существует, критерии оценки применяют простейшие, что и предопределяет их качественный характер.  [c.432]


Смотреть страницы где упоминается термин Термический цикл сварки и структура сварного соединения : [c.300]    [c.9]    [c.75]    [c.14]    [c.157]    [c.149]    [c.9]    [c.329]   
Смотреть главы в:

Основы сварочного производства  -> Термический цикл сварки и структура сварного соединения



ПОИСК



219 — Сварка и соединения

219 — Сварка и соединения сварные

Влияние термического цикла сварки на структуру и свойства металла в сварных соединениях Характерные зоны металла в сварных соединениях

Сварка сварной шов

Сварка термический цикл

Структура сварных соединений

Термическая при сварке

Термические циклы сварки, предопределяющие структуру и свойства сварных соединений

Термический цикл



© 2025 Mash-xxl.info Реклама на сайте