Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гальванические толстые

Согласно Вагнеру [11 ], рост достаточно толстых пленок можно представить как результат работы гальванического элемента. Особенностью в этом случае является то обстоятельство, что пленка оксида представляет собой среду, где переносится электрический заряд катионами, анионами (в гальваническом элементе — электролит) и электронами (в гальваническом элементе — металлический проводник) между электродами — границами раз-  [c.20]


Покрытие Ni—Сг—Fe и толстое гальваническое 126,5  [c.341]

Защитные свойства цинкового покрытия зависят от его толщины и агрессивности окружающей среды. Наиболее толстые цинковые покрытия могут быть получены методами горячего цин-, к ования (20—125 мкм) и напыления (100— 250 мкм). При использовании гальванического метода нанесения цинковых покрытий толщину можно изменять в пределах от 2 до 25 мкм, Тол-  [c.80]

Критерием коррозионной стойкости металла при атмосферных испытаниях наиболее часто служит изменение внешнего вида образцов, изменение их веса и механических характеристик. При оценке коррозионной стойкости металла или покрытия по изменению внешнего вида сравнение ведут по отношению к исходному состоянию поверхности, поэтому состояние последней перед испытанием должно быть тщательно зафиксировано. Для этого образцы осматривают невооруженным глазом, а некоторые участки — через бинокулярную лупу. При этом особое внимание обращают [320] на дефекты а) на основном металле (раковины, глубокие царапины, вмятины, окалина, ее состояние и пр.) б) на гальваническом или лакокрасочном покрытии (шероховатость, питтинг, трещины, вздутия, непокрытые места, пятна от пальцев, царапины). Результаты наблюдений записывают или фотографируют. Для облегчения наблюдений и точного фиксирования их результатов на осматриваемый образец накладывают проволочную сетку или прозрачную бумагу с нанесенной тушью сеткой. Результаты осмотра записывают в специальную карту предварительного осмотра, имеющую такую же сетку [319]. Первоначально за образцами наблюдают ежедневно для установления первых очагов коррозии. В дальнейшем осмотр повторяют через 1, 2, 3, 6, 9, 12, 24 и 36 мес. с момента начала испытаний. При наблюдении на образец можно накладывать масштабную сетку и наблюдаемые изменения фиксировать на карте осмотра [1]. При наблюдении обращают внимание на следующие изменения 1) потускнение металла или покрытия и изменение цвета 2) образование продуктов коррозии металла или покрытия, цвет продуктов коррозии, их распределение на поверхности, прочность сцепления с металлом 3) характер и размеры очагов коррозии основного, защищаемого металла. Для однообразия в описании производимых наблюдений рекомендуется употреблять одинаковые термины потускнение, пленка и ржавчина. Термин потускнение применяют, когда слой продуктов очень тонкий, когда происходит только легкое изменение цвета поверхности образца, термин пленка употребляется для характеристики более толстых слоев продуктов коррозии и термин ржавчина — для толстых, легко заметных слоев продуктов коррозии. Характер слоев продуктов коррозии предлагается описывать терминами очень гладкие, гладкие, средние, грубые, очень грубые, плотные и рыхлые. При описании характера продуктов  [c.206]


Защитные покрытия. Здесь следует различать покрытия на органической основе (лакокрасочные и высокополимерные покрытия, смазки) покрытия на неорганической основе (окисные, фосфатные, хроматные и др.) и металлические покрытия различных типов (гальванические, металлизационные, горячие, диффузионные покрытия, плакирование). Защитные покрытия мог т быть различной толщины как очень тонкие защитные слои (адсорбционные пассивные пленки толщиной десятки ангстрем), так и толстые обкладки (футеровки) конструкции защитными материалами (толщиной, превышающей иногда 2—3 см).  [c.154]

Травление черных металлов — важная операция подготовки поверхности деталей перед нанесением гальванических покрытий. В процессе горячей обработки металлов при прокате, ковке, штамповке образуется толстая пленка окислов (окалина), препятствующая нанесению гальванопокрытий. Даже тщательно отшлифованная и отполированная поверхность металла покрыта тонкой окисной пленкой, которую требуется удалять для обеспечения необходимого сцепления покрытия с основным металлом.  [c.126]

Абразивная обработка — это обработка деталей струей кварцевого или металлического песка или стальной дроби с целью удаления толстого слоя окалины, ржавчины, небольших рисок и раковин. После обработки поверхность становится равномерно матовой и чистой.. Последующее гальваническое покрытие с такой поверхностью имеет прочное сцепление.  [c.156]

Часто приходится наносить гальванические покрытия на неметаллические и зделия для сообщения их поверхности физикохимических свойств, присущих различным металлам и сплавам. При этом имеется своя специфика, заключающаяся в химических методах нанесения тонких токопроводящих пленок и последующем электрическом осаждении более толстых слоев.  [c.7]

Никель и никельсодержащие материалы требуют перед гальванической обработкой иной подготовки, чем стали, медные сплавы или детали из цинкового литья. Покрытия на этих материалах, за исключением нейзильбера, идущего на изготовление столовых приборов и других столовых предметов, используются для технических и, в меньшей мере, для декоративных целей. Эти покрытия должны или изменить вид и характер наружной поверхности, или служить подготовкой к дальнейшим рабочим процессам, или выполнять специальную задачу например, покрытия наносят на никелевые сплавы или на толстые слои никеля для экономии золотых сплавов.  [c.369]

Если слой налета толстый и трудно удаляется, то его устраняют (даже в тех случаях, когда деталь будет гальванически обрабатываться в кислых электролитах) сначала в щелочном цианистом растворе, а затем после основательной промывки дополнительно в разбавленной кислоте.  [c.378]

Электролитическое свинцевание широкого применения в промышленности не имеет и применяется только для специальных целей. Объясняется это тем, что нанесение гальваническим путем толстых слоев свинца затруднительно, в то же время нанесение толстых слоев свинца необходимо в виду мягкости этого металла.  [c.209]

Свинцовые покрытия до недавнего времени наносили в основном горячим способом — методом окунания или наплавкой на поверхность металла. Горячий способ при всех его преимуществах (получение толстых покрытий за относительно короткий срок) обладает существенным недостатком благодаря наличию примесей в свинце (в основном олова) за счет лужения поверхности перед свинцеванием, химическая стойкость покрытия значительно ниже стойкости покрытия свинцом гальваническим способом, при котором свинец в покрытии находится в химически чистом состоянии. Наибольшее применение свинцовые покрытия, отличающиеся высокой химической стойкостью, находят для предохранения металла от действия серной кислоты, сернистых газов и других сернистых соединений. Для этих целей свинцом покрывают химическую аппаратуру, металлические конструкции химических цехов и т. д.  [c.209]

Толщина слоя обычно не превышает 2 мк, более толстые слои наращиваются гальванически.  [c.62]


При нанесении покрытия толщиной 20—25 мкм деталь из АЛ2 за счет теплоты конденсации хрома и теплового излучения тигля может нагреваться до 400—450° С. Если литье силумина недостаточно высокого качества, то при этих температурах поверхность силумина вспучивается. В таких случаях вместо толстого хромового покрытия можно нанести тонкий подслой с последующим гальваническим хромированием.  [c.113]

Чтобы гальваническое покрытие получилось одинаковой толщины, конфигурация анод должна соответствовать катоду (рис. 130). У деталей сложной конфигурации силовые линии электрического поля концентрируются на ребрах и остриях, увеличивая там плотность тока. Из-за этого в этих местах осаждается более толстый слой метаЛла.  [c.134]

Состав наращиваемых на электропроводный подслой гальванических покрытий может быть разнообразным. Чаще всего это толстый слой матовой или блестящей меди, матового или полу-блестящего никеля. При декоративной металлизации такой первый толстый слой служит упрочняющим и демпфирующим элементом для выравнивания напряжений, возникающих при изменениях температуры из-за большого различия в коэффициентах теплового расширения пластмассы и металла. Поэтому он должен обладать высокой пластичностью и обычно составляет 4 общей толщины покрытия. Для улучшения работоспособности металлизированных химико-гальваническим способом пластмасс  [c.12]

Тонкие слои металла, полученные вакуумной или химической металлизацией, часто используют в качестве электропроводного слоя, на который затем гальваническим способом наносят толстый слой металла. Современная гальванотехника обладает широким выбором различных металлопокрытий, налаженной технологией и готовыми наборами относительно дешевого оборудования. Поэтому металлизацию пластмасс стараются свести к гальваническому способу, создавая различным путем электропроводную поверхность пластмассовых изделий. Способов получения неметаллических электропроводных слоев известно довольно много нанесение электропроводных лаков, осаждение электропроводных слоев фосфидов, халькогенидов, оксидов физическими и химическими методами или образование электропроводной поверхности прямо в электролите осажденного металла путем электрохимического восстановления оксидов цинка, кадмия, индия и других металлов в приповерхностном слое пластмасс. Применяемые методы образования электропроводных слоев должны обеспечивать прочную связь металла с пластмассой, чем они в принципе отличаются от методов образования (сообщения) поверхностной электропроводности на диэлектриках, используемых в гальванопластике.  [c.5]

Состав наращиваемых на электропроводный подслой гальванических покрытий может быть разнообразным ([11, 12, 14, 19] см. такл е ОСТ 4Г0.054.264). Чаще всего это толстый слой матовой или блестящей меди, матового или полублестящего никеля. При декоративной металлизации такой первый толстый слой служит упрочняющим и демпфирующим элементом для выравнивания напряжений, возникающих при изменениях температуры из-за большого различия в коэффициентах теплового расширения пластмассы и металла. Поэтому он должен обладать высокой пластичностью и обычно составляет 4 общей толщины покрытия. Для улучшения работоспособности металлизированных химико-гальваническим способом пластмасс предложено наносить напряженные никелевые покрытия, которые обжимают пластмассовое изделие. В качестве отделочных покрытий при декоративной металлизации пластмасс наносят блестящие, блестящие велюровые или черные покрытия никеля и хрома, а иногда и тонкие слои золота. Основные типы структур, применяемых для декоративной металлизации покрытий, показаны на рис. 2.  [c.9]

Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве едст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванические ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестяпщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51.  [c.234]

Полярность покрытия в значительной степени зависит от состава среды, и в процессе коррозии в результате поляризации или других факторов может произойти изменение полярности покрытия. Исследование алюминиевых покрытий различной толщины и пористости в жесткой промышленной атмосфере Москвы, отличающейся высоким содержанием сернистых газов, показало, что в пористом покрытии (10-12 мкм) очаги коррозионных поражений концентрируются в местах наличия пор и происходит значительное язвенное разрушение стали. Такой же характер разрушения был на образцах с тонким пористым алюминиевым покрытием, испытанных в районе Уфимского нефтеперерабатьшающего завода и Оренбургского ГПЗ, атмосфера которых отличается высоким содержанием Hj S и SO2. Толстые алюминиевые покрытия обнаруживали в этих условиях эффект намного выше, чем у цинковых той же толщины. Об этом свидетельствуют также сравнительные испытания, в промышленных атмосферах предприятий химической и нефтеперерабатьша-ющей промышленности алюминированной стали и цинковых покрытий, полученных различными методами и имеющими толщину слоя 50 мкм (из расплава), 25 мкм (гальваническое с хроматированием), 25 мкм (вакуумное), 100-120 мкм (термодиффузионное), 200-250 мкм (металлизационное). Характеристика промышленных атмосфер и скорость коррозии покрытий, полученных различными методами, приведена в табл.15.  [c.59]


В последующих экспериментах по применению пропитки никелевыми сплавами были использованы волокна сапфира большого диаметра (0,5 мм) с различными покрытиями (Ноуан и др. [39]). Зти опыты оказались неудачными, так как даже толстые вольфрамовые покрытия не защищали волокна от повреждения (разд. IV, А). Последующие программы разработки композитов, связанные с использованием гальванического осаждения и диффузионной сварки, будут обсуждаться в разд. III.  [c.327]

Значительная часть канатной проволоки поставляется оцинкованной горячеоцинкован-ная, гальванически оцинкованная и оцинкованная и протянутая. Гальваническое оцинкование проволоки применяется главным образом для обеспечения особо высокого предела прочности при растяжении в сочетании с высокой вязкостью или для получения на поверхности проволоки толстого слоя цинка.  [c.413]

Подобные алюминиевые покрытия эффективны для защиты крепежных изделий из высокопрочной стали, титана и алюминиевых сплавов, эксплуатируемых в морской воде. Для защиты подшипников из углеродистой стали от коррозии были применены ионные покрытия из нержавеющей стали 304, а алюминиевых— из нержавеющей стали 310 [70]. Покрытия из алюминия, золота и нержавеющей стали наносят на крепежные изделия и другие мелкие детали для защиты их от коррозии и улучшения механических свойств. Особенности технологии нанесения ионных покрытий на мелкие детали рассмотрены в работе [71]. Для защиты от коррозии отдельных узлов установок газификации угля предложено наносить покрытия толщиной 10—100 мкм из А12О3. На тонкое покрытие, нанесенное методом ионного осаждения, можно наносить толстое покрытие гальваническим методом. Например, можно сочетать процесс ионного осаждения медного покрытия толщиной 25 мкм на титан с последующим осаждением толстого (500 мкм) слоя меди в обычной гальванической ванне (чисто гальваническим методом медное покрытие на титан осаждать не удается) [70]. Особенно перспективен метод ионного осаждения при нанесении покрытий на непроводящие детали (карбид вольфрама, пластмассы, керамику и др.), т. е. на детали, на которые другими методами осадить металлические покрытия сложно или вообще нельзя.  [c.129]

ТЭЭЛ сконструирован в виде коврика. В нем параллельные проволочки из хромеля и константана переплетены стекловолокном. Концы каждого термоэлемента по обе стороны коврика скручены вместе, образуя термопары, соединенные последовательно. На концы термопар, являющиеся горячей стороной, гальваническим способом накладывается толстый слой никеля, а на концы, являющиеся холодным спаем, — толстый слой меди. Никель хорошо противостоит коррозии при нагреве, а медь как хороший проводник тепла способствует охлаждению холодных концов. Установка смонтирована из нескольких изолированных ТЭЭЛ-ковриков, свернутых в трубки горячими концами к горелке, а холодными — во внешнюю сторону для охлаждения. Такой ТЭГ мощностью 1,25 вт при 25 в может работать в течение 10 и более лет. Расход газа чрезвычайно мал, так как для работы ТЭГ требуется тепла немногим больше, чем от обычной свечи. Запаса сжиженного газа хватает для работы в течение одного года.  [c.128]

Из всех методов механической подготовки поверхности особое внимание следует обратить на пескоструйную очистку, которая придает поверхности значительную шероховатость. Если на изделие наносится толстое покрытие (например, прокатным плакированием или напылением), сильная шероховатость не только не вредит, но даже необходима для лучшей сцепляемости покрытия с основным металлом. Наоборот, при нанесении тонких покрытий, в частности гальванических, поверхность, во избежание возможной коррозии, необходимо тщательно полировать. По Эрбахеру [15], отношение площадей идеально гладкой поверхности к полированной и к обработанной наждаком составляет 1 1,7 2,5.  [c.595]

Травление—процесс удаления продуктов коррозии и оксидных соединений с поверхности металла путем растворения их в кислотах или растворах щелочей. Обычно пленка оксидных соединений или других продуктов коррозии образуется на поверхности металлов под воздействием окружающей среды при хранении или в процессе предварительной обработки металла. Например, поверхность стали после термической обработки покрывается толстым слоем окалины, которая состоит из различных оксидов FeO, РбгОз, Рез04. Такая пленка на поверхности деталей препятствует нанесению гальванического покрытия.  [c.136]

При этом алюминиевые детали покрываются тонкой пленкой цинка (0,1—0,15 мкм), предохранякнцей поверхность от окисления. Наиболее прочное сцеплени с гальваническими покрытиями металлов достигается при нанесении более тонких, плотных и сплошных цинковых пленок. Снижение концентрации раствора приводит к образованию более толстых и менее плотных осадков. Чем выше концентрация щелочи, тем тоньше осадки цинка. Осадки, полученные в концентрированных растворах, обладают мелкозернистой структурой, более тонкие, плотные и лучше сцеплены с поверхностью алюминия, чем осадки из разбавленных растворов.  [c.112]

Гальванопластикой можно также получать оформляющие вставки из никелькобальтового сплава путем нанесения на неметаллическую модель токопроводящего слоя (серебрение) и по-следуюигего наращивания толстых слоен никель-кобальтового сплава в соответствующих гальванических ваннах н течение 12—20 суток.  [c.164]

Менее положительный металл Me растворяется с отдачей своих валентных электронов. Находящийся в растворе более положительный ион металла Л1в + выступает как акцептор электроноз и восстанавливается до Мба. Этот процесс возможен только в случае, если потенциалы обоих металлов Me и Me достаточно отличаются друг от друга. Процесс прекращается, как только на более отрицательном металле образуется совершенно плотное моноатомное отложение более положительного металла. Однако фактически происходит дальнейшее отложение более положительного металла с образованием гальванического элемента между основным металлом и металлом покрытия. Полученные таким способом толстые покрытия имеют плохое сцепление и часто губчатую форму.  [c.35]

Выделение водорода — это один из тех факторов, которые обусловливают образование пор в гальванических покрытиях. Водородные поры в зависимости от условий электролиза могут проникнуть до основного металла или же частично перекрыться в результате роста покрытия. В частности, в толстых покрытиях водород способствует образованию ямкообразных углублений (питтинг), не достигающих основного металла. Появление питтинга основывается на длительном контакте пузырьков водорода с катодной поверхностью. Образование питтинга усиливается с увеличением толщины покрытия и в особенности в высокопроизводительных электролитах с быстрым ростом покрытия. Прилипающие пузырьки водорода экранируют находящийся под ними металл от прохождения тока, значительно замедляя рост покрытия в этих местах, в результате чего в покрытии возникают углубления. Если в течение времени выделение водорода будет постепенно повышаться, то возникающий питтинг будет иметь каплеобразную форму. Хотя этот дефект могут вызвать также и другие прилипающие к катоду газы, все же обычной причиной дефекта является выделяющийся на катоде водород. Причиной для прилипания служат поверхностные силы на границе фаз, зависящие от материала катода. Особенно важно состояние поверхности катода. Пузырьки водорода особенно прочно прилипают к рискам, порам, шлаковым включениям и к прочим дефектам по-  [c.44]


Структура электролитически осажденных твердых растворов имеет более или менее ясно выраженное слоистое строение. Толстые покрытия могут быть грубослоистыми. Однако частично можно также наблюдать тонкие слои, расстояние между которыми составляет около 1 мкм. На рис. 47 представлено слоистое строение сплава А —РЬ с 9% РЬ. Структура гальванического сплава N1—Ре с 7,8% Ре (рис. 48) имеет частично тонкослоистое и частично грубослоистое строение. Наряду с этим в нижней части рисунка виден волокнообразный рост кристаллита в направлении линий тока. На рис. 49 показана структура сплава РЬ—Си с 6,7% РЬ, Рядом с тонкими слоями встречаются очень грубые пластинчатые кольца.  [c.82]

Прочность сцепления электролитически осажденных покрытий была хорошей. Гальванически обработанные детали из деформируемого материала могли быть нагреты до температуры плавления магния (591—650°С) без образования на покрытии отслоений или пузырей, а гальванически обработанные детали из литого материала выдерживали нагревание до 288°С. Медненные и серебренные поверхности подвергали пайке мягким припоем без уменьшения прочности сцепления покрытий. Покрытия проковывались и изгибались, не обнаруживая при этом каких-либо повреждений. Оказалось возможным наносить толстые хромовые покрытия, служащие для повышения износостойкости, которые также не обнаруживали склонности к отслаиванию.  [c.309]

Состав цинковых сплавов для литья под давлением должен быть строго выдержан, так как загрязнения сплавов быстро приводят к межкристаллитной коррозии и разрушению. Точное содержание компонентов цинкового сплава является обязательным условием для производства литья. Насколько важно поддерживать постоянную температуру форм и жидкого металла, видно, например, из того, что и при слишком холодной форме и при слишком холодной температуре металла на поверхности отливок образуются поры и другие дефекты. Такого рода отливки доставляют при их шлифовании и полировании немало затруднений, так как для получения ровных и полированных поверхностей приходится снимать много металла, и при этом часто оказывается поврежденным верхний наиболее плотный слой, именуемый литейной коркой. Снятие металла обнаруживает мелкие поры, находящиеся под наружной поверхностью детали, отлитой иод давлением. Эти поры являются причиной обра зования пузырей в гальванических покрытиях- Необходимо стремиться к тому, чтобы цинковые детали, отлитые под давлением и подлежащие гальванической обработке, выходили из формы с возможно более ровной и чистой поверхностью и с толстой литейной коркой. При проектировании деталей, отливаемых под давлением, и при изготовлении для них форм необходимо наряду с соображениями поточной технология учитывать также и соображения наивыгоднейшей формы деталей с точки зрения их гальванической обработки. По возможности нужно закруглять и устранять на деталях острые углы, края и па5ы. Совместная работа ПО проектированию, изготовлению и гальванической обработке приносит практическую пользу и уменьшает расходы.  [c.323]

Шлифование— наиболее трудно контролируемый процесс резания — может при определенных режимах вызвать образование на поверхности значительных растягивающих напряжений и прижогов. Поверхностные трещины, образующиеся в расоматриваемом случае при гальванической обработке, как правило, имеют весьма малую глубину и распространяются только яа толщину поверхно1СТ1ного слоя, где действуют растягивающие напряжения. Малая глубина таких трещин затрудняет их обнаружение, в особенности на хромированных деталях с толстым слоем хрома. Обнаружить трещины, образовавшиеся под слоем хрома ( 60 мкм), путем машит-  [c.71]

Результаты ускоренных коррозионных испытаний по методу ASS приведены в табл. 18. Как показано в работе (151 ], 16— 18 ч указанных испытаний соответствуют 1 году натурных испытаний в условиях сильно загрязненной промышленной атмосферы. Из данных, приведенных в табл. 17, видно, что защитные свойства хромовых покрытий с увеличением толщины от 5 до 20 мкм улучшаются, а при толщинах более 20 мкм ухудшаются, несмотря на уменьшение пористости (см. табл. 16). Визуальный осмотр поверхности после испытаний показал, что для покрытия толщиной 30 и 40 мкм характерно вспучивание и растрескивание из-за больших напряжений сжатия в толстых покрытиях. Гальванические хромовые покрытия толщиной 15—30 мкм через 3 ч испытаний по методу ASS имеют такой же внешний вид, как покрытия толщиной 5—10 мкм, нанесенные в вакууме.  [c.94]

Применение металлизации для нанесения достаточно толстых (свыше 2,5 мкм) покрытий в первую очередь потребовалось для защиты от коррозии деталей из высокопрочной стали. Органические покрытия для них непригодны, так как детали часто находятся при температуре выше 100° С. Гальванические кадмиевые покрытия, хотя и обеспечивают хорошую защиту от коррозии, также малопригодны для ответственных деталей самолетов, ракет и космических аппаратов, требующих 100%-ной надежности, так как высокопрочные стали в процессе травления в растворах кислот и щелочей, а также в процессе осаждения гальванического покрытия наводороживаются и становятся хрупкими. Процесс нанесения покрытий в вакууме полностью устраняет опасность водородной хрупкости.  [c.132]

Для защиты участков поверхности деталей, не подлежащих азотированию, наиболее часто применяют гальваническое лужение. Температура плавления олова (232° С) значительно ниже температуры азотирования (500—600° С), однако олово не стекает с поверхности детали благодаря силам поверхностного натяжения. Толщина слоя олова 10—15 мкм. При более толстом слое олово может перетекать на азотируемую поверхность, в результате чего в азотируемом слое будут возникать мягкие пятна . На предварительно фосфатированной поверхности олово не удерживается силами поверхностного натяжения, и поэтому мягккг пятна образоваться не могут.  [c.141]

Тонкие слои металла, полученные вакуумной или химической металлизацией, используют в качестве электропроводного слоя, на который затем гальваническим способом наносят толстый слой металла. Современная гальванотехника обладает широким выбором различных металлопокрытий, налаженной технологией и готовыми наборами относительно дешевого оборудования. По-этому металлизацию пластмасс стараются свести к гальваническому способу, создавая различным путем электропроводную поверхность пластмассовых изделий. Способов получения неме таллических электропроводных слоев известно довольно много нанесение электропроводных лаков, осаждение электропроводных слоев фосфидов, халькогенидов, окисей физическими и хими ческими методами или образование электропроводной поверхности прямо в электролите осаждаемого металла путем электрохимического восстановления окислов цинка, кадмия, индия и  [c.7]

При гальваническом осаждении покрытий наибатее прочное сцепление обеспечивается при предварительном нанесении контактным способом бапее тонких, плотны. и сплошных цинковых осадков. Снижение концентрации раствора приводит обычно к образованию более толстых и менее плотных осадков.  [c.7]

Гальваническое осаждение покрытий. Осаждение по контактно-осажденным 2п и N1. Наиболее распространенный способ нанесения гальванических покрытий на детали после обработки в цинкатном растворе состоит в их последующем меднении в цианистой ванне, в которой pH не должно превышать 10, а концентрация свободного цианида 4 г/л. Загрузку деталей осуществляют под током, и в первые 2 мин электролиза работают лри повышенной б 2 раза плотности тока. Толщина осажденного слоя Си долж( а быть 1,5 мкм 6 2,5 мкм. Оптимальные результаты получаются при применении агедных электролитов, содержащих сегнетову соль. При нанесении более толстых слоев Си производят дополнительное осаждение в пирофосфатных или сернокислых электролитах. По слою Си возможно обычное осаждение других металлов. На контактно-осажденный слой Ъп можно осаждать 2п и С(1 из цианистых и кислых электролитов. Перед кадмированием применяю также контактное осаждение С(1 из раствора следующего состава (г/л)  [c.8]


Смотреть страницы где упоминается термин Гальванические толстые : [c.93]    [c.204]    [c.161]    [c.284]    [c.143]    [c.172]    [c.347]    [c.401]    [c.58]    [c.421]    [c.431]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.730 ]



ПОИСК



Гальванические покрытия многослойны толстые

Гальванические покрытия многослойные Толщины средние толстые — Электросопротивлени

Гальванический цех

Толстов



© 2025 Mash-xxl.info Реклама на сайте