Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера случай движения твердого

Эйлера случай движения твердого тела 521  [c.655]

Из условия равновесия сил в каждой точке твердого тела вытекают условия равновесия сил для тела в целом (т. е. равенство нулю их главного вектора R и главного векторного момента Мо относительно некоторого центра О). Наоборот, из условий равновесия сил для тела в целом не вытекает условия их равновесия в каждой точке тела если = Мо — О, т. е. твердое тело движется по инерции, то его центр тяжести С — либо в покое, либо движется прямолинейно и равномерно, а движение тела относительно точки С представляет эйлеров случай движения твердого тела вокруг неподвижной точки (гл. X, 2), при котором точки тела могут двигаться с ускорением, откуда вытекает Р + N Ф 0. В общем случае материальной системы из условий = Мо = О нельзя сделать никаких заключений ни о равновесии сил в каждой точке системы, ни о равновесии самой системы например, если рассмотреть всю Солнечную систему и пренебречь притяжением звезд, то для нее выполняются условия == Мо = О, а вместе с тем отдельные небесные тела Солнечной системы или тела у поверхности планеты могут двигаться по тем или иным законам.  [c.347]


Сейчас мы рассмотрим самый общий случай движения твердого тела по отношению к одной фиксированной (основной) системе отсчета. Таким движением является движение свободного твердого тела. Это движение, оказывается, тоже будет слагаться из серии мгновенных винтовых движений. К такому выводу приводит теорема Шаля, которая по отношению к свободному телу играет ту же роль, что и теорема Эйлера — Даламбера по отношению к твердому телу, имеющему неподвижную точку ( 10, п. 1), и которая нами уже была рассмотрена для случая плоскопараллельного движения ( 9, п. 2).  [c.153]

Случай движения твердого тела, рассмотренный Эйлером.  [c.415]

Первым подробно исследованным случаем движения твердого тела вокруг закрепленной точки была задача, рассмотренная Л. Эйлером. Л. Эйлер рассматривал твердое тело, находящееся под действием сил тяжести и двигающееся вокруг закрепленной точки, совпадающей с его центром инерции.  [c.415]

Лагранж рассмотрел случай движения твердого тела, существенно отличающийся от случая, рассмотренного Эйлером.  [c.427]

Три основные случая движения твердого тела, рассмотренные Л. Эйлером, Ж. Лагранжем и С. В. Ковалевской, могут быть иллюстрированы рисунком, принадлежащим Н. Е. Жуковскому (рис. 61). На рис. а) показан случай движения, рассмотренный  [c.450]

Эйлер рассмотрел случай движения твердого тела с одной неподвижной точкой, когда действующие на тело силы приводятся к одной равнодействующей, проходящей через неподвижную точку. В этом случае результирующие моменты действующих активных сил равны нулю L = О, М = 0, = О, и, следовательно, уравнения движения твердого тела в главных осях эллипсоида инерции твердого тела относительно неподвижной точки О имеют вид  [c.185]

Задача, которой намерен далее заняться автор, разрешена впервые Эйлером за 100 лет до Пуансо, и потому рассматриваемый в ней случай движения твердого тела около неподвижной точки обычно называют случаем Эйлера. Аналитическое исследование этого случая можно найти в книге Суслов Г. К., Теоретическая механика, 1946.  [c.540]

Помимо проблемы устойчивости движения, одной из классических задач теоретической механики является задача о движении твердого тела вокруг неподвижной точки, т. е. тела, закрепленного при помощи сферического шарнира. Этой задачей занимались самые выдающиеся ученые-механики Эйлер, Лагранж, Пуансо. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо для этого же случая движения твердого тела вокруг неподвижной точки дал наглядную геометрическую картину этого движения. Лагранж решил эту задачу в том случае, когда твердое тело имеет ось динамической симметрии, проходящую через неподвижную точку. Задача о движении твердого тела вокруг неподвижной точки имеет первостепенное значение для теории гироскопов, которая находит широкое применение в различных областях современной техники. После Эйлера и Лагранжа многие ученые безуспешно пытались найти новые случаи решения этой задачи. В 1888 г. Парижская академия наук объявила конкурс на лучшее теоретическое исследование движения твердого тела вокруг неподвижной точки. Премию в этом конкурсе получила первая русская женщина-математик Софья Васильевна Ковалевская (1850—1891). В своей работе Задача о движении твердого тела вокруг неподвижной точки она дала полное решение этой задачи в новом случае, значительно более сложном по сравнению со случаями Эйлера и Лагранжа. Эта работа доставила С. В. Ковалевской мировую известность и, по выражению Н. Е. Жуковского, немало способствовала прославлению русского имени .  [c.26]


Движение твердого тела с неподвижной точкой по инерции (случай Эйлера)  [c.195]

Приступая к изучению движения твердого тела с неподвижной точкой по инерции (случай Эйлера), рассмотрим отдельно движение тела, у которого Аф В, и движение тела в случае, когда А В, т. е, когда эллипсоид инерции для неподвижной точки является эллипсоидом вращения. В случае А = В мы будем говорить, что тело обладает динамической симметрией. Динамическая симметрия всегда имеет место у однородных тел вращения, но может случиться, что тело не является телом вращения, однако А = В, т. е. имеет место динамическая симметрия.  [c.195]

Пусть к гироскопу не приложено никаких внешних моментов. Тогда имеет место случай Эйлера движения твердого тела при А = В ф С Кинетический момент К будет постоянным как по величине, так и по направлению. В соответствии с теоремой 6.7.4 гироскоп осуществляет регулярную прецессию вокруг вектора кинетического момента. Ось фигуры вращается вокруг него с постоянной угловой скоростью прецессии  [c.497]

Найти функцию Гамильтона и написать уравнения Гамильтона для случая Эй.пера движения твердого тела вокруг неподвижной точки (см. 6.7). В качестве Лагранжевых координат принять углы Эйлера.  [c.700]

Одной из классических задач механики является задача о движении твердого тела вокруг неподвижной точки. Эта задача имеет первостепенное значение для теории гироскопов, нашедшей широкое применение в различных областях современной техники. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо дал для того же самого случая наглядную геометрическую интерпретацию. Лагранж решил эту задачу в том случае, когда твердое тело имеет динамическую ось симметрии, проходящую через неподвижную точку. После Эйлера и Лагранжа многие ученые пытались найти новый случай решения этой задачи, т, е. новый случай интегрируемости дифференциальных уравнений движения твердого тела вокруг неподвижной точки, но безуспешно.  [c.17]

Мы рассмотрим лишь наиболее простые случаи интегрирования дифференциальных уравнений движения твердого тела вокруг неподвижной точки, а именно случай Эйлера и случай Лагранжа.  [c.703]

Рассмотрим, например, движение твердого тела вокруг неподвижной точки, когда существует не зависящая от времени силовая функция. Положение тела зависит от трех углов Эйлера 6, ср и ф (см. в этом томе п. 381 и следующие за ним) здесь кинетическая энергия не содержит явно 6 и если силовая функция также не содержит этого угла, то мы имеем дело с только что разобранным случаем. Тогда ф будет играть роль переменной и интеграл  [c.407]

Свободное движение твердого тела. Одной из задач, к которой можно применить уравнения Эйлера, является задача о движении твердого тела, не подверженного действию никаких сил. Центр масс такого тела будет находиться в покое или будет двигаться равномерно. Поэтому, не нарушая общности решения, мы можем рассмотреть движение этого тела в системе, связанной с его центром масс. Тогда центр масс этого тела будет неподвижен, и поэтому кинетический момент будет возникать только вследствие вращения вокруг центра масс. Поэтому уравнения Эйлера будут уравнениями движения этой системы, а так как мы рассматриваем случай, когда моменты сил отсутствуют, то эти уравнения примут вид  [c.180]

Тем самым мы получили векторную форму дифференциальных уравнений Эйлера для случая отсутствия внешних сил (свободного движения твердого тела).  [c.186]

Чтобы изучить движение твердого тела 5 с одной неподвижной точкой при менее частных предположениях относительно характера действующих сил, чем это имело место в случае Эйлера, рассмотрим случай, когда твердое тело S, закрепленное в своей точке О, находится в однородном силовом поле. Таким однородным полем можно считать, например, поле силы тяжести, если рассматривать его в достаточно малой части пространства. Каково бы ни было рассматриваемое однородное поле, активные силы, под действием которых находится твердое тело, эквивалентны (не только векторно, но и механически) одной силе (результирующей сил, действующих на отдельные точки, или элементы твердого тела), приложенной в центре масс или в центре тяжести G тела. Ясно, что, не уменьшая общности, мы можем прямо обратиться к только что упомянутому  [c.98]


Наиболее простым и очень важным случаем является тот, когда момент внешних сил относительно неподвижной точки равен нулю. Тогда говорят, что имеет место случай Эйлера движения твердого тела вокруг неподвижной точки. Этот случай, очевидно, возможен, когда внешних сил нет совсем или тогда, когда внешние силы, приложенные к телу, приводятся к равнодействующей, проходящей через неподвиж-  [c.189]

Распределение ускорений. Плоскопараллельное движение является частным случае.м движения твердого тела. На практике этот случай встречается наиболее часто, а потому и будет исследован особо. При изучении плоскопараллельного движения твердого тела, как это уже отмечалось выше, можно ограничиться рассмотрением движения некоторого плоского сечения твердого тела. Будем изучать движение плоского сечения по отношению к системе прямоугольных осей, которую будем считать неподвижной. Обозначим эту систему осей через Оху. Пусть мгновенный центр вращения твердого тела находится в точке С(хо, г/о) (рис. 74). Координаты произвольной точки М твердого тела обозначил через хну. Скорости точек твердого тела определяются по формуле Эйлера  [c.102]

Задача о движении твердого тела около неподвижной точки издавна привлекает внимание механико-в и математиков. Эйлер в 1758 г. впервые рассмотрел решение этой задачи для случая, когда центр масс тела совпадает с неподвижной точкой, т. е. когда  [c.75]

Движение твердого тела, имеющего неподвижную точку [случай в)], имеет три степени свободы и определяется тремя обобщенными координатами ф, я]) и 0 — углами Эйлера. Кинематические уравнения Эйлера имеют такой вид  [c.17]

Рассматриваемая задача о движении твердого тела около закрепленной точки интегрируется в квадратурах как частный случай двух более общих интегрируемых случаев, рассматриваемых выше (аналога случая Эйлера и аналога случая Лагранжа).  [c.393]

Интегрирование дифференциальных уравнений движения твердого тела, имеющего одну неподвижную точку, представляет значительные математические трудности. Мы рассмотрим лишь наиболее простые случаи, а именно случай вращения динамически симметричного тела вокруг неподвижной точки по инерции (случай Эйлера) и случай движения под действием силы тяжести, когда тело имеет относительно неподвижной точки ось динамической симметрии, а центр тяжести лежит на этой оси (случай Лагранжа ).  [c.322]

Движение твердого симметричного тела, имеющего одну неподвижную точку, по инерции (случай Эйлера)  [c.322]

Решение в случае Эйлера (М = 0). Особый интерес представляет собой движение тела по инерции, т.е. когда внешние моменты равны нулю. Этот случай и называется случаем Эйлера. Выбрав в качестве кинематических уравнений, дополняющих динамические, уравнения Эйлера, запишем полную систему дифференциальных уравнений, описывающих движение твердого тела с одной неподвижной точкой по инерции  [c.84]

Об определении ориентации по наблюдениям в общем случав враще ния. Вращательное движение твердого тела вокруг центра масс описывается уравнениями Эйлера  [c.170]

Рассмотрим наиболее общий случай движения твердого тела, когда оно является свободным и может перемещаться как угодно по отношению к системе отсчета ОххУ г (рис. 180). Установим вид уравнений, определяющих закон рассматриваемого движения. Выберем произвольную точку А тела в качестве полюса и проведем через нее оси Ax iy[z i, которые при движении тела будут перемещаться вместе с полюсом поступательно. Тогда положение тела в системе отсчета Ох Угг будет известно, если будем знать положение полюса Л, т. е. его координаты Xia Ууа, ia, и положение тела по отношению к осям Ax[y iZ[, определяемое, как и в случае, рассмотренном в 60, углами Эйлера ф, i 3, 0 (см. рис. 172 на рис. 180 углы Эйлера не показаны,чтобы не затемнять чертеж). Следовательно, уравнения движения свободного твердого тела, позволяющие найти его положение по отношению к системе отсчета ОххУ г в любой момент времени, имеют вид  [c.153]

Как известно, еще в 1758 г. Л. Эйлер рассмотрел случай движения твердого тела вокруг неподвижно точки (полюса), когда центр тяжести совпадает с полюсом, а вое силы сводятся к равнодействующей, проходящей через эту неподвижную точку. В 1834 г. Л. Пуансо дал геометрическую интерпретацию этого случая. В 1788 г. Лагранж (и независимо от него в 1815 г. С. Пуассон) рассмотрел случай, когда тело имеет ось сиАГметрии, проходящую через неподвижную точку, и движется под действием только силы тяжести, точка приложения которой лежит на оси симметрии и не совпадает с полюсом (симметрический тяжелый гироскоп — волчок). Обе задачи сводятся в общем случае к квадратурам, и их решения выражаются через эллиптические функции.  [c.246]

Случай Ковалевской, После исследований Эйлера и Лаг ранжа ученые долго не могли найти других интегрируемых случае] движения твердого тела с одной неподвижной точкой. Лиш в 1888 г. С. В. Ковалевская в мемуаре О проблеме вращени5 твердого тела около неподвижной точки рассмотрела третий ин тегрируемый случай движения твердого тела около неподвижно точки. В случае Ковалевской эллипсоид инерции твердого тела построенный для неподвижной точки, удовлетворяет условиям  [c.436]

Первые интегралы уравнений движения. Исследуем более сложный случай движения твердого тела около неподвижной точки, когда эллипсоид инерции тела относительно этой точки имеет неравные оси (т. е. АФВФС), а сумма моментов действующих на тело внешних сил относительно точки опоры равняется нулю. Практически интересный пример такого движения будет иметь место, если произвольное тяжелое тело закрепить в его центре тяжести. Если произвольное массивное тело будет двигаться в свободном пространстве (т. е. в пространстве без действия внешних сил), то легко понять, что центр масс такого тела будет двигаться прямолинейно и равномерно, а движение около центра хмасс будет соответствовать формулированным выше условиям. Эта задача о движении твердого тела была впервые исследована Л. Эйлером в 1758 г. наглядную геометрическую картину этого движения на осно-  [c.443]


Для того чтобы полностью определить закон движения твердого тела, системы динамических уравнений Эйлера недостаточно. Эту систему следует допо.пнить кинематическими соотношениями ( 6.2). В целом получается система дифференциальных уравнений, исследование свойств решения которой часто сопряжено со значительными трудностями. Ниже будут рассмотрены три случая, когда для этой системы аналитически может быть построено общее решение. Это — случай Эйлера, когда момент внешних сил отсутствует, а также случаи Лагранжа-Пуассона и Ковалевской, когда движение вокруг неподвижной точки происходит под действием параллельного поля силы тяжести.  [c.466]

Пример. Случай этот встречается в движении твердого тяжелого тела с одной закрепленной точкой — в случае Лагранжа. Если за определяющие переменные взять углы Эйлера, которыми определяется положение главных осей эллипсоида инерции тела, построенного для неподвижной точки, относительно неподвижных осей OxijjiZi, где Zi вертикальна и направлена вверх, то  [c.312]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]

Однако в Отделе третьем Динамики содержится не только обоснование этого общего закона площадей, но и вывод общей зависимости между суммой моментов количеств движения материальных точек ( тел ), составляющих систему, и суммой моментов внешних сил — закон моментов . Этот результат (притом для более общего случая) содержится в исследованиях Далам-бера и Эйлера по динамике твердого тела, о чем см. пункты 11, 12 данной главы. Эйлеру принадлежит также заслуга в формулировании закона моментов количеств движения для сплошной среды (жидкости) — в качестве независимого принципа действительно, все приводимые и до сих пор доказательства закона моментов для сплошной среды, основанные на тех же предпосылках, что и в случае системы материальных точек и абсолютно твердого тела, иллюзорны.  [c.127]

Задача о движении тяжелого твердого тела около неподвижной точки издавна привлекала внимание всех крупных механиков и математиков. Эйлер в 1758 г. впервые рассмотрел решение этой задачи для случая, когда центр масс совпадает с неподвижной точкой. В 1788 г. Лагранжем был исследован другой случай движения тяжелого твердого тела, когда эллипсоид инерции, построенный для неподвижной точки, является эллипсоидом вращения, а центр масс твердого тела находится на оси симметрии этого эллипсоида. После открытия Лагранжа в течение целого столетия, несмотря на усилия многочисленных ученых, в том числе таких крупных математиков, как Пуассон, Якоби, Пуансо, не было получено новых существенных результатов. В 1886 г. Парижская академия наук объявила конкурс на соискание премии Бордена за лучшее сочинение на тему о движении твердого тела около неподвижной точки. Эту премию получила С. В. Ковалевская, пред-  [c.399]

Достаточно привести такой пример в задаче о движении твердого тела вокруг неподвижной точки в случае Эйлера находятся все интегралы динамических уравнений Эйлера и определяются все искомые неизвестные как функции времени. Но уравнение Гамильтона — Якоби в этом случае не интегрируется в квадратурах в углах Эйлера. Да и вообще в задаче о движении твердого тела вокруг неподвижной точки метод Якоби проходит только для случая Лагранжа это показано М. А. Чуевым, работа которого публикуется в данном же сборнике.  [c.8]

Ю. А. Гартунг разработал теорию движений тела с обобщенными прецессиями угловой скорости а) с точечным относительны М годографом угловой скорости (случай Лагранжа — Эйлера) б) с орямоли нейным годографом угловой скорости в подвижной плоскости, иосителе вектора угловой скорости (случай Гриоли) в) с круговым годографом г) с эллиптическим годографом. Применялись уравнения Ценова для систем с неголономными связями второго порядка, причем в одних случаях находились управляющие моменты в виде реакций связей, а в других эти дополнительные управляющие воздействия отсутствовали, т. е. находились новые частные случаи, вернее, может быть подслучаи в классической задаче о движении твердого тела вокруг неподвижной точки.  [c.14]

Она покинула жизнь в расцвете творческих сил и таланта, незадолго до этого получив две крупные премии за открытие и исследование нового случая интегрируемости уравнений движения твердого тела вокруг неподвижной точки (уравнений Эйлера-Пуассона). Это — премия Бордена Французской Академии Наук (1888 г.) и премия Шведской Королевской Академии Наук (1889г.). Тем не менее, она так и не смогла добиться места в России, потому вынуждена была преподавать в одном из университетов Стокгольма, и только неожиданная смерть помешала ей окончательно получить шведское гражданство.  [c.4]


Смотреть страницы где упоминается термин Эйлера случай движения твердого : [c.77]    [c.411]    [c.84]    [c.186]    [c.66]    [c.79]    [c.4]   
Теоретическая механика (1970) -- [ c.0 ]



ПОИСК



Движение в случае G2 ВТ

Движение твердого симметричного тела, имеющего одну неподвижную точку, по инерции (случай Эйлера)

Движение твердого тела вокруг неподвижной точки, случай Ковалевско случай Эйлера

Движение твердого тела с неподвижной точкой по инерции (случай Эйлера)

Движение твердого тела с одной неподвижной точкой Динамические уравнения Эйлера Случай однородного силового поля

Движение твердых тел

Движение твёрдого тела вокруг неподвижной точки. Случай Эйлера

Мак-Куллага интерпретация эйлерова случая движения твердого тел

Пуансо интерпретация эйлерова случая движения твёрдого тела: первая

Случай движения твердого тела, рассмотренный Эйлером. Геометрическая интерпретация Пуансо

Эйлер

Эйлера случай (движение твердого симметричного тела, имеющего одну

Эйлера формулы для случая движения твердого тела вокруг неподвижного

Эйлера эйлеров

Эйлеров случай движения твёрдого тела вокруг неподвижной точки. Движение твёрдого тела по инерции



© 2025 Mash-xxl.info Реклама на сайте