Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы конструкционные - Механические характеристики

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой - применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]


Детали из пластмасс широко используются как электроизоляционные, конструкционно-изоляционные и чисто конструкционные. Особенно широко они применяются в производстве электрических аппаратов и приборов, в том числе высокочастотных, а также мелких электрических машин. Широкому применению пластмасс способствует все увеличивающаяся их номенклатура и разнообразные ценные свойства, а также особенность технологии получения деталей из пластмасс. Некоторые пластмассы имеют весьма высокие электроизоляционные свойства и могут применяться при сравнительно высоких напряжениях и высоких частотах другие имеют настолько высокие механические характеристики, что могут применяться взамен конструкционных деталей из различных металлов и сплавов. При этом облегчается масса изделий, повышается эксплуатационная надежность аппаратуры с точки зрения вероятности пробоя изоляции, повышается коррозионная стойкость. Очень ценным технологическим свойством пластмасс является возможность получения за одну операцию прессования деталей весьма сложной формы, часто с запрессовкой металлических деталей.  [c.194]

Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [И, 20—211. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела основа — покрытие связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].  [c.21]

Литература, посвященная свойствам конструкционных материалов при различных условиях работы, весьма обширна, и поток ее непрерывно возрастает. Приводимые ниже данные по изменению механических характеристик наиболее распространенных материалов (металлов, бетона, пластмасс и др.) носят иллюстративный характер и не претендуют на полноту. В случае необходимости их легко уточнить, обратившись к библиографии цитируемых источников, а также специальным справочникам и журналам.  [c.13]


В ГОСТ 9467—75 регламентированы 14 типов электродов для сварки конструкционных сталей (см. табл. 4.1) В наименовании типа электрода содержится буква Э, после которой приведено значение временного сопротивления разрыва, кгс/мм (например, Э38, Э42, Э50). У некоторых типов электродов после цифр поставлена буква А, что указывает на более высокие характеристики пластичности наплавленного металла (см. табл. 4.1). У электродов этих типов регламентированы механические характеристики (временное сопротивление разрыву, относительное удлинение, коэффициент наплавки и угол изгиба), а также содержание серы и фосфора в наплавленном металле.  [c.72]

Второй этап разработки новой конструкции — формирование конкретного технического решения, воплощающего концептуальную модель в металле. На этом этапе с привлечением средств вычислительной техники может быть решена задача построения базовой геометрической модели разрабатываемой конструкции, которая включает описание топологии и комплекса размеров изделия, а также механических характеристик конструкционных материалов, из которых выполнены элементы изделия. Базовая геометрическая модель разрабатываемой конструкции служит основой формирования практически всех типов моделей, необходимых для реализации на ЭВМ процессов конструирования.  [c.287]

В случае классического конструкционного материала (металл, сплав и др.) свойства материала конструкции задаются фиксированными значениями его физико-механических характеристик, в которых заранее учитывается влияние технологических факторов  [c.9]

Особенности моделей оптимизации конструкций из композитов. В процессе оптимизации конструкций из композитов совершенствуются геометрия и физико-механические характеристики материала, определяемые варьируемыми структурными параметрами композита. Данное обстоятельство расширяет возможности проектировщика, позволяет находить проектные решения, адекватные характеру конкретной системы внешних воздействий на конструкцию, однако приводит к необходимости учета технологических ограничений на пределы варьирования структурных параметров композита, а также возможностей реализации проекта в реальной конструкции (технологичность проекта). Указанная особенность рассматриваемой проектной ситуации принципиально усложняет постановку задачи оптимизации конструкции из композита по сравнению с аналогичной задачей, например для конструкции из металла или иного однородного конструкционного материала. Характер задачи оптимизации конструкций из композитов существенно усложняется вследствие необходимости учета ряда специфических свойств композиционного материала, в частности зависимостей физико-механических характеристик композита от параметров его структуры, имеющих, как правило, достаточно сложное аналитическое выражение. Данная особенность проявляется в первую очередь при построении модели оптимизации, а также в процессе численной реализации оптимизационной модели.  [c.169]

Выбор материала для изготовления деталей, работающих в условиях гидроэрозии, долгое время основывали на коррозионной стойкости материалов. Поэтому наиболее часто применяли корро-зионно-стойкие (нержавеющие) сплавы без учета их сопротивляемости микроударному разрушению. Применение высоких скоростей изменило требование к таким деталям изменился и принцип выбора конструкционных материалов. В этих условиях необходимо, чтобы материал обладал кроме высокой коррозионной стойкости еще и высоким сопротивлением микроударному разрушению. Это новое требование заставило расширить и углубить понятие о прочности металлов и сплавов. В условиях гидроэрозии сопротивляемость микроударному разрушению определяется не усредненными механическими характеристиками, а прочностью отдельных микроучастков поверхности. При этом решающее значение имеет прочность отдельных структурных составляющих, металлического зерна и его границ.  [c.230]


Правая часть выражена через размах А/С = /Стах — Ктш коэффициента интенсивности напряжений в пределах цикла. Для большинства конструкционных металлов и сплавов принимают т 2. ... .. 6 (для углеродистых сталей при не слишком высоких напряжениях т 4). При m = 4 обычно принимают с = 10 . .. 10 мм"-Н . Некоторые авторы, исходя из модельных соображений, предлагают формулы, связывающие постоянную с с механическими характеристиками материала. Так, при m = 4 полагают с или с Ee Kj ) , где сТв — предел прочности при растяжении — деформация, соответствующая разрушению Е —модуль упругости. При т = 2 предлагают оценки с Е , что соответствует подрастанию трещины за один цикл на (АК/Е) , и т. д.  [c.108]

Применительно к чугунам также используют механические характеристики, определяемые путем испытания соответствующих образцов на изгиб и сжатие Существуют также испытания на кручение, текучесть и другие, однако механические характеристики, получаемые при этих испытаниях для конструкционных автомобильных металлов и сплавов, обычно, не используются. Твердость авто  [c.12]

Сталь можно ковать, прокатывать и отливать. Она имеет высокие механические характеристики, ее можно обрабатывать резанием, закаливать и т. д. В сравнении с чугуном сталь менее жидкотекучий и легкоплавкий металл, но вследствие высоких конструкционных качеств, благоприятного сочетания механических и технологических свойств широко применяется как основной конструкционный металл в машино- и приборостроении.  [c.18]

Магний является самым легким конструкционным металлом — его плотность (удельный вес) составляет 1,7 г/см , температура плавления 650° С- Предел прочности чистого магния в деформированном состоянии равен около 180 МН/м" (18 кгс/мм"), а относительное удлинение— всего лишь 5%. Ввиду низких механических характеристик магний не применяют в чистом виде для изготовления деталей — для этой цели используют магниевые сплавы. К существенным недостаткам магниевых Сплавов относится их малая коррозионная стойкость. Положительным качеством является их отличная обрабатываемость режущим инструментом с получением чистой поверхности. Большинство магниевых сплавов хорошо сваривается. За счет низкой плотности (удельного веса) они обладают удовлетворительной удельной прочностью. Их широко применяют в тех случаях, когда масса изделий имеет большое значение.  [c.279]

Электроды для сварки углеродистых и легированных конструкционных сталей классифицируют по механическим характеристикам металла шва и сварного соединения электроды для сварки легированных теплоустойчивых сталей классифицируют по механическим характеристикам металла шва и сварного соединения и по химическому составу металла шва. Первая группа содержит 15 типов электродов —с Э-34 по Э-145. Здесь буква Э — электрод для электродуговой сварки, а следующая за буквой цифра показывает минимально гарантируемый предел прочности металла шва (в кГ/мм ). К одному типу электрода могут быть отнесены одна или несколько марок электродов. Так, к электроду типа Э-42 относят электроды марок ОММ-5, ЦМ-7 и др.  [c.202]

Примерные значения Ор для некоторых конструкционных металлов с указанием состояния, к которому они относятся, и близких механических характеристик приводятся в табл. 7.  [c.47]

У более однородных и пластичных материалов, нанример конструкционных сталей, снижение механических характеристик с увеличением размеров заготовки также имеет место (фиг. 71). Оно особенно велико для относительного удлинения, относительного сужения и ударной вязкости (п. 12, 20), по в известной мере касается и характеристик сопротивления пластической деформации, в частности Для ориентировочных подсчетов значений и Стд черных металлов в сечениях, превосходящих размеры лабораторных образцов, можно пользоваться диаграммами фиг. 72 и 73. Следует иметь в виду ири этом, что в технических условиях на поставку металлических полуфабрикатов (поковок, крупного проката и пр.) указываются значения механических свойств, соответствующие размерам поставляемого полуфабриката. В ГОСТ на конструкционные сталп также оговаривается, на какие толщины (сечения) распространяются приводимые показате.ти механических свойств.  [c.117]

Конструкционные металлы имеют различные механические свойства, зависящие от их химического состава и структурного состояния. Сочетание таких характеристик, как химический состав, механические свойства и структурное состояние металла, определяет его сопротивление обработке резанием. Обрабатываемость металлов резанием находит свое проявление в общих закономерностях процессов стружкообразования, формирования новых поверхностей и качества обработанных поверхностей.  [c.5]

Детали из пластмасс широко используются как электроизоляционные, конструктивно-изоляционные и чисто конструкционные. Особенно большое значение нашло их применение в производстве электрических аппаратов и приборов низкого напряжения, сильного тока и слабого тока, в том числе высокочастотных, а также мелких электрических машин. Широкому применению пластмасс способствует все увеличивающаяся их номенклатура и разнообразные ценные свойства, а также особенность технологии получения деталей из пластмасс. Некоторые пластмассы имеют весьма высокие электроизоляционные свойства и могут применяться при сравнительно высоких значениях напряжения и частоты другие имеют настолько высокие механические характеристики, что могут применяться взамен конструкционных деталей из различных металлов и сплавов. При этом облегчается вес изделий, повышается эксплуатационная надежность аппаратуры с точки зрения вероятности пробоя изоляции, повышается коррозионная стойкость. Очень ценным технологическим свойством пластмасс является возможность получения за одну операцию прессования деталей весьма сложной формы, в случае необходимости — с ребрами жесткости, выемками, отверстиями без резьбы и с резьбой, с запрессованными металлическими деталями болтами, гайками, пружинами, соединительными проводниками и пр. При рациональной конструкции за одну операцию прессования можно получить целый конструктивный узел, заменяющий собой группу подлежащих сборке деталей. Таким путем в технологию производства аппаратов и приборов вносятся элементы существенного упрощения и уменьшения трудоемкости. Отпадает много операций механической обработки деталей, сокращается количество узлов и операций сборки.  [c.191]


При динамических испытаниях нагрузки прикладывают с большой скоростью. Динамические испытания на изгиб образцов стандартных размеров с надрезом определенной формы на специальных машинах (называемых копрами) широко применяются при исследовании свойств конструкционных материалов и особенно стали. Определяемая при динамических испытаниях на изгиб механическая характеристика работа разрушения А характеризует способность металла сопротивляться ударному разрушению. Зная работу разрушения А и площадь поперечного сечения образца F, можно определить удельную ударную вязкость a , (в дж/м ) по уравнению  [c.18]

Электроды для сварки конструкционных и теплоустойчивых сталей согласно ГОСТ 9467—60 классифицированы по механическим характеристикам металла шва и сварного соединения, выполненных этими электродами. Электроды для сварки теплоустойчивых сталей классифицированы, кроме того, и по химическому составу металла шва. ГОСТ 9467—60 устанавливает в зависимости от состава следующие виды покрытий электродов для сварки конструкционных и теплоустойчивых сталей рудно-кислое, обозначаемое буквой Р рутиловое—Т фтористо-кальциевое—Ф органическое — О.  [c.307]

В отличие от металлов в большинстве случаев процессы получения пластмасс с заданными физико-механическими характеристиками и производства деталей с требуемыми размерами и точностью технологически совмещены. Это значит, что в начале технологического процесса имеется еще не конструкционный 1 3  [c.3]

Наибольший практический интерес представляют свойства тугоплавких металлов при высоких температурах. Однако для характеристики этих металлов как конструкционных материалов имеет значение изменение механических свойств в широком диапазоне температур. Характерные температурные зависимости предела прочности при растяжении и пластических характеристик различных тугоплавких металлов в рекристаллизован-иом состоянии приведены на рис. 384. Как и следовало ожидать,  [c.525]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

Применительно к задачам оценки малоцикловой прочности изделий определение расчетных характеристик сопротивления малоцикловой усталости конструкционного материала требует учета ряда специфических особенностей и прежде всего технологических. К таким особенностям относятся состояние материала, влияние на сопротивление малоцикловому деформированию и разрушению места и направления вырезки образцов, особенности работы металла сварного шва, представляющего собой разнородное По механическим свойствам соединение. Для оценки циклических свойств материала изделия необходимо проводить испытания образцов из металла толщины, способа изготовления (прокат, поковка и т. п.) и термообработки, соответствующих штатным. При этом вопрос рационального и правильного выбора места вырезки образца должен решаться с учетом данных по напряженному со-  [c.155]

Применительно к атомным энергетическим установкам по мере накопления данных о средних и минимальных характеристиках механических свойств, повыщения требований к уровню технологических процессов на всех стадиях получения металла и готовых изделий, развития методов и средств дефектоскопического контроля и контроля механических свойств по отдельным плавкам и листам было принято [5] использовать при расчетах не величины [о ], а коэффициенты запаса прочности и гарантированные характеристики механических свойств для сталей, сплавов, рекомендованных к применению в ВВЭР (см. гл. 1, 2). Для новых металлов, разрабатываемых применительно к атомным энергетическим реакторам, был разработан состав и объем аттестационных испытаний, проводимых в соответствии с действующими стандартами и методическими указаниями. Методы определения механических свойств конструкционных материалов при кратковременном статическом (для определения величин Ов и 00,2) и длительном статическом (для определения величин и o f) нагружениях получили отражение в нормах расчета на прочность атомных реакторов [5].  [c.29]

Постоянное увеличение скоростных характеристик машин и оборудования, повышение надежности и долговечности их требует все более широкого применения в машиностроении новых высокопрочных материалов с повышенными физико-механическими свойствами (жаропрочных, твердых и коррозионноустойчивых металлов и сплавов). В качестве легирующих элементов для конструкционных сталей, помимо хрома и никеля, во все большей степени применяются труднообрабатываемые металлы — молибден, ванадий и т. д.  [c.115]

Принципиальная схема, характеризующая стадии и этапы создания новых машин и конструкций, показана на рис. 1.1. На стадии конструирования одним из основных элементов является определение запасов прочности и исходного ресурса безопасной эксплуатации. При этом в расчетах прочности конструкторы используют исходные данные по основным рабочим параметрам машин и конструкций. Расчеты проводят с применением ЭВМ для определения усилий, температур, напряжений и деформаций с учетом эксплуатационных воздействий в расчетах, как правило, используют данные по основным характеристикам механических свойств конструкционных металлов. Такие данные содержатся в нормативных руководящих материалах, справочниках или получаются по результатам стандартных испытаний лабораторных образцов.  [c.6]


Молибден входит в группу перспективных тугоплавких металлов с о.ц.к.-решеткой (W, Мо, Сг, Та, Nb, V) и обладает благоприятным комплексом физикй-механических характеристик, благодаря которым он является одним из лучших конструкционных металлов (табл. 1.1).  [c.7]

Особенностью композиционных материалов является то, что их свойства можно задавать заранее (или проектировать). Если же к тм применять методы расчета обычных металлов, обладающих некоторыми детерминированными свойствами, то основные достоинства композиционных материалов не будут реализованы. При использоварши углепластиков прежде всего принимаются во втмате наиболее важные с точки зрения свойств материала характеристики (например, ориентация волокон), а затем уже ведется расчет конструкционных свойств композиционного материала. Так как углепластики отличаются по структуре и механическим характеристикам от металлов, расчеты требуют особого внимания, с тем чтобы исключить возможность неправильного решения. В данной главе рассмотрен широкий круг вопросов — от основ расчета углепластиков и до примеров практического решения некоторых типичных задач.  [c.177]

Углеродистые стали в зависимости от состава и состояния могут иметь различную структуру и свойства, которые в той или иной степени отражают их способность сопротивляться гидроэрозии. Однако при разрушении металла в микрообъемах наблюдается большая неоднородность, и усредненные механические характеристики оказываются непригодными для оценки эрозионной стойкости. Поэтому для правильного выбора конструкционного материала необходимо проводить испытания на гидроэрозионную стойкость. На практике иногда при одних условиях испытания металлов с одинаковыми химическим составом и структурой, равными усредненными механическими характеристиками показатели эрозионной стойкости образцов оказываются различными. Это объясняется неоднородным строением микрообъемов металла и наличием на отдельных участках большого количества микроскопических дефектов, которые недостаточно выявляются обычными механическими испытаниями, а при мнкроударном нагружении оказывают отрицательное влияние на сопротивляемость металла разрушению.  [c.123]

В настоящее время интерес к цирконию, как к новому конструкционному металлу необычайно возрос. Установлено, что цирконий при надлежащей очистке от примесей может быть получен в виде пластичного металла с хорошими механическими и коррозионными характеристиками. Наиболее чистый цирконий получают аналогично титану термической диссоциацией тетраиодида металла. Цирконий — это серебристый металл с высокой температурой плавления (1800 °С), удельный его вес 6,5. Чистый цирконий — весьма пластичный металл. Возможна его ковка, прокатка, протяжка, штамповка, изготовление тонкостенных труб, получение фольги. Небольшие примеси могут значительно повысить твердость и прочность циркония. Удельная прочность сплавов циркония может приближаться к удельной прочности конструкционных сталей. Цирконий легко абсорбирует, особенно при повышении температуры, азот, кислород, водород и теряет присущую ему пластичность. Водород при нагреве в вакууме до температур порядка 1000 °С может быть удален из циркония. Однако в результате подобной обработки не удается устранить абсорбированные кислород и азот и возникшую по этой причине хрупкость металла. Способность циркония при повышении температуры легко абсорбировать большое количество азота и кислорода позволяет использовать его в электронной и вакуумной промышленностях как геттер (поглотитель газов).  [c.254]

Перечисленные группы деталей отличаются между собой по толщине стенок (толстостенные и тонкостенные, осесимметричные и с переменной толщиной стенки), по физико-механическим характеристикам материала (конструкционные, углеродистые, средне- и высоколегированные стали, цветные сплавы), по диаметрам и длине отверстий (диаметры 10—150 мм, длины до 1500 мм), по требованиям, предъявляемым к обработанной поверхности (шероховатость = 0,4 80, точность от 5-го до 1-го класса), по особенностям сложившихся технологических процессов изготовления деталей (обработка на станках-автоматах, автоматических и поточных линиях, наличие термообработки) и т. д. Поэтому для успешного решения вопроса о введении деформирующего протягивания в технологические процессы изготовления столь разнородных деталей потребовалось глубокое исследование этого метода обработки. Такое исследование было выполнено в ИСМ АН УССР в 1964—1974 гг. В процессе его проведения наряду с представленными выше исследованиями качества обработанной поверхности и обрабатываемости металла, упрочненного деформирующим протягиванием, решались также следующие вопросы  [c.162]

Определение механических характеристик конструкционных атериа-лов при растяжении и сжатии производится обычно путем испытаний образцов материала на специальных испытательных машинах. Образцы должны иметь определенную форму и размеры в зависимости от материала (металл, камень, пластмасса, древесина) и от вида деформации (растяжение, сжатие). Часто изготовление образцов необходимой формы и размеров оказывается невозможным, например если требуется определить механические характеристики материала изготовленной конструкции. В этих случаях определить механические характеристики материалов можно только каким-либо косвенным способом.  [c.51]

В настоящей работе ставилась задача изучения свойств керамик разного состава как конструкционных материалов, сочленяемых с металлами пайкой или механической стыковкой для вакуумных устройств и герметизирующих изоляторов различного назначения. В таких конструкциях одними из определяющих характеристик являются температурный коэффициент линейного расширения и неизменность линейных размеров изделий в условиях эксплуатации. Действие излучения на температурные коэффициенты линейного расширения КЛТР изучено сравнительно слабо. Известно, что он не меняется у кварца и аморфного кремнезема при облучении дозой 7-10 нейтр/сж и у кварца становится таким же, как и у аморфного кремнезема при облучении дозой 1,4нейтр/слг .  [c.106]

Электроды для сварки углеродистых, легированных конструкцион. ных и легированных жаропрочных сталей ГОСТ 9467—60 классифици. рует в зависимости от механических характеристик металла шва и свар, ного соединения, выполненного этими электродами, на несколько типов Каждому типу может соответствовать одна или несколько марок электродов. Марка электродов характеризуется определенным составом покрытия, маркой электродного стержня, технологическими свойствами, свойствами металла шва.  [c.97]

В настоящее время нет окончательного обоснованного мнения о том, какими механическими характеристиками должен обладать металл для лучшего сопротивления эрозии. Этот факт может найти свое объяснение в том, что при принятии тепловой теории эрозионного разрушения, устанавливающей вынос с поверхности изделия тонкого слоя полужидкого или совсем расплавленного металла, механические свойства поверхностного слоя, по-видимому, не играют определяющей роли. Действительно, при расплавлении границ зерен или отдельных структурных составляющих, вероятно, не имеет значения, твердый или мягкий был материал, с высоким или низким пределом упругости и прочности, с большим или малым значением ударной вязкости и т. д. Однако совсем не учитывать механические свойства материала изделий, конечно, нельзя. Следует признать, что высокие характеристики прочности, при одновременной хорошей пластичности и вязкости, безусловно, способствуют лучшей работе изделий в условиях воздействия горячих газовых струй. Основным здесь является не то, какими свойствами обладает металл при комнатной температуре, а то, как эти свойства изменяются с повышением температуры и какие характеристики имеет металл при высоких рабочих температурах. Проведенные исследования показали, что, например, образцы из чистого молибдена или хрома, имеющие твердость по Виккерсу в пределах 40—50 кПммР-, при измерении в вакууме на приборе Гудцова—Лозинского в диапазоне 1050—1100° С, обладают значительно более высокой эрозионной стойкостью, чем образцы из конструкционной стали, имеющей при тех же температурах твердость 3—5 кГ/мм . В данном случае малое разупрочнение сплавов при высоких температурах способствует лучшей сопротивляемости эрозионному разрушению.  [c.146]

Для сварки конструкционных сталей тип электрода содержит букву Э, вслед за которой цифрами указана величина временного сопротивления при разрыве например Э38, Э42, Э50. .. Э150. У некоторых типов электродов после цифр поставлена буква А, что характеризует более высокие характеристики пластичности наплавленного металла (см. табл. 15). Электроды этого типа регламентированы только по характеристикам механических свойств (ов а , угол загиба) и содержанию серы и фосфора в наплавленном металле.  [c.106]

Рост интереса к исследованию поверхностей раздела был связан с переходом от модельных систем к композитам, матрицами которых являются важные конструкционные металлы — алюминий, титан и металлы группы железа. Эти металлы обычно более химически активны, чем серебряные и медные матрицы исследованных модельных систем, таких, как Ag—AI2O3 и Си—W. Однако приведенные в настоящей главе данные по казывают, что известная реакционная способность может благоприятствовать достижению желательного комплекса механических свойств. Выше приводились примеры, когда определенное развитие реакции на поверхности раздела обеспечивало оптимальное состояние последней. Бэйкер [1] показал, что композиты алюминий—нержавеющая сталь обладают наилучшими усталостными характеристиками в условиях слабо развитой реакции, а Бзйкер и Крэтчли [2] установили то же самое для системы алюминий—двуокись кремния.  [c.180]


Методика исследования хара гтеристик сопротивления деформированию и разрушению металла труб при малоцикловом нагружении. В настоящее время исследование малоцикловых характеристик конструкционных металлов проводится по разработанной методике с использованием специальных средств и аппаратуры [114, 234]. Широкое применение получает серийно выпускаемая автоматическая испытательная установка типа УМЭ-10Т, обеспечивающая нагружение образца в требуемом режиме (мягкое, жесткое, асимметрия). Испытания проводятся в условиях растяжения — сжатия при непрерывной регистрации параметров нагружения и деформирования. Установка имеет электромеханический привод с устройством выборки зазоров в винтовой паре, пять порядков скоростей перемещения активного захвата (от 0,005 до 100 мм/мин), возможность реверсирования с помощью системы автоматики двигателя электропривода при достижении как заданного усилия, так и заданной деформации. Машина имеет электронно-механическое силоизмерение (от резистивных датчиков, наклеенных на упругий динамометр), снабжена деформометром, обеспечивающим измерение продольной абсолютной деформации рабочей длины образца 2 мм. В необходимых случаях машина укомплектовывается деформометром для измерения поперечных деформаций. Усиленные сигналы (до 1000 1) регистрируются на диаграммном приборе барабанного типа в масштабе 50О X Х500 мм. Точность регистрации параметров нагружения 1—2%. Максимальная частота нагружения порядка 5 циклов/мин.  [c.155]

Прогнозирование характеристик сопротивления усталости конструкционных материалов с учетом влияния эксплуатационных новреждений фрсттингом / Петухов А. Н.— В нн. Механическая усталость металлов Материалы VI Межцу-нар. коллоквиума. Киев Наук, думка, 1983, с. 381—386.  [c.437]

Бериллий. Бериллий, используемый ныне как легирующая добавка <в сплавах меди, никеля, алюминия), обладая наименьшим из всех металлов сече-инем захвата тепловых нейтронов и достаточно высокими коррозионной стойкостью и жаропрочностью, имеет перспективу конструкционного материала ядерной энергетике. Обладая очень высокой удельной прочностью (выше, чем у титана) вплоть до 500 °С, бериллий найдет применение как конструкционный материал и в технике летательных аппаратов (в особенности ракет). Непреодолимым пока препятствием к использованию бериллия в качестве конструкционного материала является малая пластичность. Весьма характерной особенностью бериллия является анизотропность, возникающая как при литье и остывании, так и в результате механических деформаций. Интересно заметить, что при комнатной температуре и при 700 С материал в отношении каждой из характеристик, 6 и гр, практически изотропен. При промежуточных же температурах различие в величинах каждой из упомянутых характеристик для двух разных лаправлений, проходящих через точку тела, максимально и достигает 400 и 200% соответственно, т. е. материал существенно анизотропен. Механические харак теристики бериллия в значительной мере зависят от способа получения полуфабрикатов его. Так, например, Оп, (в продольном направлении) колеблется между 65 и 28 кПмм первое число относится к полуфабрикатам, получаемым тепловым выдавливанием при 400—500 °С, второе — к выдавленному слитку.  [c.327]

На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), -пределы текучести Оо,2, прочности, длительной прочности о , и ползучести a f Наряду с этими характе мстиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 5 и сужение ударная вязкость а , предел выносливости i, твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а.  [c.38]

Литые детали составляют основную часть веса машин н конструкций. Поэтому задача повышения механических и эксплуатационных свойств литых конструкционных материалов, а также совершенствование технологии получения отливок не теряют своей актуальности. В настоящей главе кратко изложены результаты выполненных исследований по повышению качества чугунных и стальных отливок. Показано, что комплексные добавки из легирующих элементов — стабилизаторов перлита и графитизатора-силикомишметалла — повышают свойства серого чугуна на 2—3 марки без ухудшения технологических свойств металла. Эксплуатационные характеристики чугунных деталей при этом резко возрастают. Описаны механизм кристаллизации модифицированного чугуна и некоторые оригинальные методики изучения эксплуатационных свойств металла. Даны реко.меидации по использованию редкоземельных лигатур для повышения пластичности и вязкости углеродистой стали.  [c.86]


Смотреть страницы где упоминается термин Металлы конструкционные - Механические характеристики : [c.248]    [c.540]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.450 ]



ПОИСК



Металлы характеристика

Механическая характеристика



© 2025 Mash-xxl.info Реклама на сайте