Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цирконий применение

Области применения сварки в защитных газах охватывают широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.  [c.198]

Промышленное применение получили сплавы ниобия F80 (плотность 8,62 г/см ) и F82 (плотность 10,82 г/см ) первый сплав - в качестве легирующих элементов содержит только цирконий, а второй - тантал и цирконий сплав ниобия с 0,75 - 1 % Zr имеет температуру плавления 2400 С,  [c.90]


Как видно из табл. 22, наиболее перспективными являются молибденовые сплавы, легированные титаном и цирконием, которые находят широкое применение для изготовления носовых частей конструкций летательных аппаратов.  [c.92]

Практические применения радиационной химии можно подразделить на оборонительные и наступательные . На первом этапе развития ядерной промышленности в основном велись работы оборонительного плана по радиационно-химической защите материалов в реакторах и вообще в условиях высокой радиоактивности (в частности, в космосе). При сильном облучении металлы становятся склонными к коррозии, хрупкости, смазочные масла портятся, в изоляторах увеличивается электропроводность и т. д. Была проведена большая работа по изысканию материалов, стойких по отношению к облучению.. Так, было найдено, что из металлов в условиях облучения хорошо сохраняют свои антикоррозийные и механические свойства цирконий и его сплавы. Хорошей радиационной стойкостью обладают и некоторые полимерные материалы, например, полистирол, для которого малы выходы как сшивания, так и деструкции (радиационно-стабильные (обычно ароматические, см. п. 3) группы, не только сами устойчивы по отношению к излучению, но могут защищать от разрушения и другие полимерные молекулы, отсасывая от них энергию (так называемая защита типа губки). Применяется также защита типа жертвы . В этом случае защищающие молекулы, например, могут захватывать образующийся в радиационно-химическом процессе атомарный водород, препятствуя последнему реагировать с другими молекулами.  [c.665]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]


Приведенные выше данные указывают на необходимость использования при нагреве циркония вакуума лучше 10 Па. Применение инертного газа дает менее удовлетворительные результаты, так как даже высокочистый инертный газ (99,995 %) по содержанию активных примесей соответствует низкому вакууму.  [c.92]

Очистка поверхности циркония от окалины производится пескоструйной очисткой или абразивами с последующим травлением в смеси плавиковой и азотной кислот. Шлифуется и доводится цирконии плохо, только на малых скоростях и с применением жидкостей.  [c.478]

Применение циркония и его сплавов  [c.490]

Освещены новейшие технологические разработки в области получения, переработки и стабилизации диоксида циркония. Описано изготовление порошков и изделий из диоксида циркония для различных областей техники. Рассмотрено применение высокоогнеупорных материалов на основе диоксида циркония и изделий из этих ма териалов в различных отраслях народного хозяйства.  [c.36]

Применение в качестве твердых смазок сульфидов, селенидов и теллуридов титана, циркония, гафния и тория обеспечивает низкий коэффициент трения, особенно при трении этих материалов друг по другу. Однако при трении по металлическим поверхностям они имеют худшие антифрикционные характеристики, чем графит. В настоящее время имеется большое число различных антифрикционных материалов и покрытий. Как указано в монографии [200] невозможно перечислить беспредельные комбинации пОлимер-комплекс наполнителей (сухих смазок) .  [c.252]

Протекание диффузионного потока внедренных атомов при их химической диффузии по междоузлиям сплава замещения должно оказывать влияние на диффузионные процессы, происходящие на узлах решетки, а эти процессы в свою очередь влияют на диффузию в подрешетке междоузлий. Теория взаимного влияния диффузионных процессов на узлах и на междоузлиях, развитая в рамках общего феноменологического формализма, основанного на применении уравнений (23,32), была развита в [20] и привела к интересной возможности перераспределения атомов на узлах решетки при химической диффузии внедренных атомов. Такой эффект был обнаружен экспериментально при изучении взаимодействия сплавов цирконий — ниобий с азотом. В образцах сплавов при поглощении азота наблюдалось перераспределение атомов циркония и ниобия между центральной и приповерхностной областями, причем  [c.319]

Возможные схемы введения легирующего элемента в покрытие обусловлены применением вместо чистых никеля и алюминия их сплавов, а также добавкой легирующих при операции плакирования порошков. Так, фосфор и олово вводили вместе с никелем методом химического соосаждения на частицы алюминия, цирконий и кремний содержались в составе алюминиевых сплавов, использованных взамен чистого алюминия. Кроме композитных порошков, использовали порошок никель-алюминиевого сплава. Состав исследованных материалов приведен в таблице.  [c.125]

Рассматриваются некоторые свойства, определяющие области применения различных тугоплавких покрытий, нанесенных на углеродные материалы плазменным напылением, газофазным, химическим и электрохимическим методами. Показано, что покрытие из двуокиси циркония, получаемое путем нанесения на графит методом аргоно-дуговой наплавки циркония и окислением последнего в кислороде, отличается высокой термостойкостью, определяемой металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического слоя, демпфирующего напряжения, возникающие в окисной плевке при эксплуатации. Метод газофазного осаждения может быть использован для нанесения различных тугоплавких покрытий как на графитовые изделия, так и в качестве барьерных на углеродные волокна при этом толщина покрытия определяется его назначением. Путем химического и последующего электрохимического наращивания, например меди на углеродные волокна, возможно получение композиции медь—углеродное волокно с содержанием волоков 20—50 об.%.  [c.264]

Эксперименты по напылению порошковых смесей различного гранулометрического состава показали, что наиболее качественные покрытия могут быть получены из порошков с размером частиц 5—20 мкм. Увеличение размера частиц приводит к уменьшению скорости роста толщины покрытия вследствие его абразивного разрушения крупными частицами оксида циркония в процессе напыления. Применение порошков более мелких фракций ограничено трудностями, связанными с их дозированием и распылением.  [c.161]


За последнее десятилетие применение электричества получило особенно широкое распространение в химической промышленности для переработки бедных руд цветных металлов и получения ценных побочных продуктов. В массовом количестве стали производиться редкие металлы, алюминий, удобрения, хлор, щелочи, водород, кислород, пластические массы, резиновые изделия, синтетические материалы и т. п. При переработке нефти получаются такие синтетические материалы, как ацетатный шелк, целлофан и др. Для изготовления 1 т ацетатного шелка требуется до 20 тыс. квт-ч электроэнергии, т. е. такое же количество, как и для производства 1 т алюминия. Электролиз явился основой технологических способов порошковой металлургии (получение титана, ниобия, тантала, циркония, ванадия, урана).  [c.124]

Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра.  [c.149]

Сплавы серии 2000 могут содержать добавки марганца, кремния, железа, никеля, лития, кадмия, олова, циркония, ванадия и титана в зависимости от специфики применения. Большинство ис-  [c.238]

Пробы обоих материалов, пригодные для работы, были приготовлены и испытаны в колоннах при 285° С. Извлечение большой части продуктов деления и коррозии из нейтральных растворов малой концентрации было хорошим. Механизм поглощения этих примесей — скорее комплексообразование или хемосорбция, чем ионный обмен. Фосфат циркония гидролизуется в нейтральной воде до равновесной концентрации фосфата 200 мг/ке при 300° С и полностью гидролизуется в щелочных растворах. Гидроокись циркония стабильна в нейтральных и щелочных растворах, но имеет практически нулевую анионообменную емкость в этих условиях. Катионообменная емкость гидроокиси циркония в щелочных растворах удовлетворительна, и она, возможно, пригодна для применения при высоких температурах в реакторных системах с щелочным водным режимом. Дополнительно следует предусмотреть извлечение анионов либо продувкой, либо низкотемпературным ионным обменом.  [c.221]

Сплавы циркония были разработаны специально для применения в ядерных реакторах. Они обладают уникальными  [c.233]

Материалы и их применение. В табл. 8.1 приведены составы наиболее широко применяемых сплавов циркония. Они отличаются в основном по коррозионной стойкости в воде и паре, доле коррозионного водорода, удерживаемого в сплаве (который приводит к низкотемпературному охрупчиванию), и их стойкости при высоких температурах.  [c.234]

Модифицирующий эффект ультразвука хорошо изучен для алюминия и его сплавов. Установлено [2, 49], что когда сплаз алюминия с 20% кремния модифицируют солями натрия при обработке ультразвуком, получается более равно.мерное распространение модифицирующего эффекта по всему металлу и более. мелкозернистая структура. При. модифицировании алюминия цирконием применение ультразвука позволяет примерно в 10 раз увеличить модифицирующий эффект. Вместо добавки 0,8% циркония можно осуществлять модифицирование в ультразвуковом поле с добавкой только 0,08—0,15% циркония. При. модифицировании алюминия. мелкозернистым порошком СаСОз п АЬОз [2] установлено, что дли обеспечения модифицирующего действия необходимо при.менять ультразвуковые колеба ния, превышающие определенный порог интенсивности. Это-порог уменьшается при увеличении количества примесей. Апа логичное уменьшение пороговой. мощности и получение болег мелкозернистой структуры достигается при модифицироваяип алюминия вольфрамом. Эффективное модифицирование сплава из алюминия и. меди и чистого алюминия АВООО в ультразвуковом поле достигнуто с применением титана в качестве модификатора, а модифицирование силу.мина—с применение.м натрия. Модифицирующее действие натрия и ультразвука объясняется уменьшение.м поверхностного натяжения на граннце расплав — кристаллы .  [c.48]

Цирконий, благодаря малому сечению захвата, высокой температуре плавления, пластичности и высокой коррозионной стойкости цирконий полу чил преимущественное применение для покрытия тепловыделяющих элемен тов и труб (малое эффективное сечение захвата нейтронов в реакторе). Цир коний имеет две аллотропические модификации а — с решеткой i. п, у. i р — с решеткой о. ц. к. Температура перехода равна 862°С. Механиче  [c.558]

Цирконий находит также применение, как поглотитель газов (геттер), в хирургии и в металлургии (легирующая нрисадка, раскислитель).  [c.559]

Для предотвращения указанных дефектов при дуговой сварке меди рекомендуются сварка в атмосфере защитных газов (аргона, гелия, азота и их смесей) применение сварочной и присадочио проволок, содержащих сильные раскислители (титан, цирконий, бор, фосфор, кремний и др.).  [c.235]

Керамические мате )иш1ы на основе окиси алюминия, окиси циркония, нитрида кремния. Применение нашипштелей (фторопласта, графита) понижает коэффициент трения но стали до 0,008.  [c.486]

Весьма противоречивы сведения по излучательной способности покрытий, по.дученных плазменным напылением лвуокиеп циркония (Рокайд-2) ПРИ температурах 1000 и 1200 К. По сообщению [56] степень черноты данного покрытия соответственно указанным температурам составила 0.52 и 0,45, а по источнику [60]—0.70 и 0.64. Значительное несоответствие, видимо, объясняется различием использованных методик по определению излучательной способности. Сравнение указанных величин с данными табл. 4-2 дает основания полагать, что ближе к истине величина степени черноты по источнику [56]. Недостаточная излучательная способность покрытий Рокайд-Z при высоких температурах ограничивает область их применения.  [c.97]

Цирконий является карбидообразующим элементом по аналогии с титаном. Это приводит к уменьшению склонности стали к росту зерна. Высокое химическое сродство к кислороду и сере обеспечивает его применение как добавки для размельчения структуры, повышения технологической пластичности и трещиноустойчи-вости металла при ковке и литье.  [c.83]


ТИЧ1Г0СТН достигается применением зонной плавки, что позволяет произ-ноднть холодную деформацию прутков иодидного циркония с суммарным обжатием 99 %  [c.91]

Описано современное производство новых, высокостойких плавленых литых огнеупорных материалов на основе оксидов циркония, алюминия, хрома, магния и кремния. Рассмотрены важнейшие свойства огнеупоров, особенности их поведения в контакте с агрессивными средами. Приведены рекомендации по выбору н рациональному применению огнеупоров.  [c.38]

Дальнейшие исследования особенностей влияния шлифовки на усталостную прочность титановых сплавов показали [172], что существенное значение имеет материал и зернистость абразива, режимы и шлифовальное оборудование. Определено, что по производительности и по меньшему снижению усталостной прочности лучшими являются круги из зеленого карбида кремния, борсиликокарбида и карбида бора, худшими—хромистый электрокорунд и монокорунд. Так, после шлифования образцов из сплава ВТЗ-1 кругами из зеленого карбида кремния усталостная прочность оказывается в 2 раза выше, чем после шлифования кругами из монокорунда. В некоторых странах (США, Япония) для шлифования деталей из титана применяют новые виды абразивных материалов - карбид циркония, корунд с присадками диоксида циркония и др. Важнейшими параметрами режима шлифования, оказывающими наибольшее влияние на усталость, являются смазочночэхлаждающая жидкость, величина подачи и скорость круга. Так, сухое шлифование приводит к микротрещинам в поверхностном слое даже при отсутствии при-жогов [ 172]. Охлаждение простой эмульсией уже повышает предел выносливости на 17 %, а применение в качестве охлаждения 10 %-ного раствора нитрата натрия и 0,5 %-ного бутилнафталинсульфоната увеличивает усталостную прочность по сравнению с сухим шлифованием на 33 %. Увеличение величины подачи заметно снижает усталостную прочность. Так, даже при охлаждении раствором нитрита натрия с увеличением  [c.180]

С целью оценки аддитивности эффекта эти величины для разбавленных растворов были использованы при расчете констант скоростей в промышленных сплавах. В табл. 4 приведены результаты расчета констант скоростей для сплавов Ti-6A1-4V и Ti-8Al-lMo-lV с использованием указанных величин для разбавленных растворов. Согласие опытных и рассчитанных величин говорит о правильности предположения об аддитивности. Константы для более концентрированных растворов были подсчитаны из данных по влиянию ванадия (рис. 16), причем неисследованный элемент вначале считали разбавителем, а удельную константу скорости для него принимали равной —0,05-10 (см/с /2)/7о- Оказалось, что эта величина выбрана правильно для железа в сплаве Ti-8V-8Mo-2Fe-3Al, однако для хрома в сплаве Ti-13V-l 1Ст-2,5А1 она несколько занижена, и хром, видимо, эффективнее тормозит реакцию, чем просто разбавитель. С другой стороны, несоответствие между расчетной и экспериментальной константами скорости в сплаве Ti-llMo-5Sn-5Zr свидетельствует о том, что цирконий очень сильно уменьшает скорость. Чтобы получить соответствие для этого сплава, удельная константа скорости для циркония была принята равной —0,27-10- (с1л1сЩ1%. Правильность выбора этой величины подтверждена дальнейшими исследованиями. Ниже будут обсуладаться вопросы, связанные с применением циркония при разработке сплавов, совместимых с борным волок-  [c.114]

Улучшение механических свойств наполненных полимерных материалов благодаря применению силановых аппретов наблюдается при использовании многих минеральных наполнителей (гл. 5). Наиболее эффективно аппретирование двуокиси кремния, окиси алюминия, стекла, карбида кремния и алюминия (табл. 4). Несколько хуже результаты, полученные с тальком, волластонитом, порошком железа, глиной, цирконом и фосфатом кальция. Аппретирование асбестина, асбеста, двуокиси титана и титаната калия малоэффективно обработка силанами карбоната кальция, графита и бора безрезультатна.  [c.196]

Присадкой циркония можно повысить сопротивление изнашиванию и удароустойчивость белого чугуна при поддержании концентрации кремния в пределах 0,8—1,0%. При этом содержание циркония желательно в пределах 0,2—0,3%. Однако по своему влиянии -на свойства чугуна цирконий менее эффективен, чем титан. Очевидно, его применение более целесообразно в комплексе с кремнием, марганцем и хромом. Значительный интерес представляет также одновременное модифицирование белого чугуна титаном и цирко" нием.  [c.64]

Цирконий и его сплавы. Основное применение как конструкционный материал цирконий находит в ядерной технике — в атомных реакторах — вследствие особого свойства — слабо поглощать тепловые нейтроны. О материале, обладающем таким свойством, говорят, что он имеет малое поперечное сечение поглощения тепловых нейтронов. У циркония сечение поглощения тепловых нейтронов равно 0,18-10" см , у алюминия 0,2Ы0 см , однако он уступает цирконию в коррозионной стойкости, чем и объясняется ислользование циркония. Меньшее сечение поглощения тепловых нейтронов, чем у циркония, имеют магний (0.059-10-2 сл ) и бериллий (0,009-lO см ).  [c.326]

Недостатки органических ионообменных материалов, а именно радиационное и термическое разрушение и окисление, побуждают изыскивать материалы, лишенные этих недостатков. Исследовались неорганические ионообменные материалы гидроокиси и соли для возможных применений в системах ядерных реакторов. Амфлет [27] описал химию и основные применения неорганических ионообменных материалов. Михаэль и др. [28] исследовали приготовление и применение для очистки высокотемпературной воды гидроокиси циркония и фосфата циркония.  [c.221]

Поглощение водорода при коррозии в чистой воде. Образование водорода (или дейтерия) при коррозии металла имеет особое значение. Мадж [19] показал разрушительное действие относительно малых количеств водорода (100—500 мг кг) на ударные свойства циркония при обычных температурах. Охрупчивание вследствие поглощения водорода имеет, вероятно, большее значение для применения в энергетических реакторах, чем окисление металла. Проблема еще более усложняется, как показано Марковичем [20], тенденцией водорода к концентрированию термодиффузией при наиболее низких температурах (наружные поверхности оболочек). Если местная концентрация превышает предел растворимости, происходит выпадение гидрида циркония ZrHi,5. Ориентация отдельных пластинок гидрида зависит от предшествующей деформации или напряжения. Если гидрид выпадает в то время, когда металл подвержен действию приложенного напряжения, пластинки стремятся расположиться нормально к растягивающему напряжению или параллельно сжимающему напряжению. Подобная ориентация является результатом структуры основного металла. Когда гидридные пластинки перпендикулярны к растягивающим напряжениям, получается крайне низкая вязкость при 7 <150°С. Все эти обстоятельства являются крайне неблагоприятными для труб высокого давления и цилиндрических оболочек с избыточным внутренним давлением, в которых максимальное растягивающее напряжение и максимальная концентрация гидрида совпадают на наружной поверхности.  [c.237]


Смотреть страницы где упоминается термин Цирконий применение : [c.359]    [c.339]    [c.559]    [c.588]    [c.288]    [c.289]    [c.34]    [c.244]    [c.490]    [c.228]    [c.104]    [c.59]    [c.25]    [c.245]   
Справочник азотчика том №2 (1969) -- [ c.296 ]



ПОИСК



Области применения циркония

Области применения циркония и его сплавов

ПРИМЕНЕНИЕ ИОНИТОВ В МЕТАЛЛУРГИИ ЦИРКОНИЯ, ГАФНИЯ, НИОБИЯ И ТАНТАЛА

Применение тугоплавких металлов, циркония и их сплавов

Свойства и применение циркония

Характеристики кислородных датчиков на двуокиси циркония, предназначенных для применения в автомобилях. К. Т. Юнг, Дж. Д. Броуд Логометрический датчик температуры. Петер Дж. Сакчетти

Циркон

Циркон применение для покрытий

Цирконий

Цирконий иодпдпый применение в как газопоглотитель

Цирконий иодпдпый, применение в вакуумной

Цирконий иодпдпый, применение в вакуумной технике



© 2025 Mash-xxl.info Реклама на сайте