Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тугоплавкие металлы — Свойства

Температура плавления — особенно важная константа свойств металла. Она колеблется для различных металлов в весьма широких пределах — от минус 38,9 С, для ртути — самого легкоплавкого металла, находящегося при комнатной температуре в жидком состоянии, до 3410°С для самого тугоплавкого металла — вольфрама.  [c.42]

Для работ в интервале 350—500°С оптимальными по свойствам являются сравнительно слаболегированные стали перлитного и ферритного классов 2. С повышением температуры до 500 — 650°С прочность сталей этого типа резко падает, уступая сталям аустенитного класса 5, а при 650—900°С стали аустенитного класса уступают первое место высоколегированным кобальтовым и никелевым сплавам 4. При температурах выше 900°С на первом месте сплавы тугоплавких металлов (молибдена, хрома и т. д.).  [c.464]


Кратко рассмотрим свойства и особенности строения тугоплавких металлов, за исключением титана и технеция .  [c.521]

Ои существенно отличается по свойствам и поведению от остальных тугоплавких металлов.  [c.521]

Хотя чистые тугоплавкие металлы и обладают, по сравнению с други.ми, более высокой жаропрочностью, их дальнейшее легирование повышает жаропрочные свойства. Поэтому на практике применяют не чистые тугоплавкие металлы (молибден, вольфрам, тантал, ниобий), а сплавы на их основе.  [c.522]

Основные физические свойства тугоплавких металлов приведены в табл. 94.  [c.522]

Физические свойства тугоплавких металлов  [c.522]

Наибольший практический интерес представляют свойства тугоплавких металлов при высоких температурах. Однако для характеристики этих металлов как конструкционных материалов имеет значение изменение механических свойств в широком диапазоне температур. Характерные температурные зависимости предела прочности при растяжении и пластических характеристик различных тугоплавких металлов в рекристаллизован-иом состоянии приведены на рис. 384. Как и следовало ожидать,  [c.525]

Жаропрочные свойства некоторых сплавов на основе тугоплавких металлов представлены на табл. 98—100.  [c.529]

Трудности при сварке тугоплавких металлов Ti, Zr, Mo, Nb и других связаны с тем, что они при нагреве интенсивно поглощают газы — кислород, водород и азот. При этом даже незначительное содержание газов приводит к резкому снижению пластических свойств этих металлов.  [c.237]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]


Таблица 19. Свойства некоторых сплавов тугоплавких металлов Таблица 19. Свойства некоторых <a href="/info/59954">сплавов тугоплавких</a> металлов
Физические свойства тугоплавких металлов представлены г. табл. 13.17.  [c.225]

Основные физические свойства тугоплавких металлов  [c.226]

Механические свойства некоторых тугоплавких металлов приведены в табл. 13.19.  [c.228]

Механические свойства некоторых тугоплавких металлов (при температуре 20°С)  [c.228]

С повышением чистоты улучшается пластичность, физико-химические и технологические свойства таких тугоплавких металлов, как  [c.230]

Наконец, вакуум как защитная среда при сварке для целого ряда химически активных и тугоплавких металлов и сплавов обеспечивает значительно более высокие показатели свойств сварного шва, чем сварка в инертных газах (Аг и Не). Поэтому целый ряд сварных конструкций- из этих материалов (вольфрам, молибден, тантал, цирконий, титан и др.) изготовляют исключительно при помощи электронно-лучевой сварки.  [c.114]

РАЗДЕЛ I. ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЖАРОПРОЧНЫХ И ТУГОПЛАВКИХ МЕТАЛЛОВ Глава 1. Кристаллическое строение металлов и сплавов  [c.16]

Глава 3. Тугоплавкие металлы и их свойства  [c.76]

Эти свойства достигаются в сплавах различного состава на основе титана за счет легирования алюминием, кремнием и тугоплавкими металлами (Мо, V, Zr, Сг).  [c.78]

Рекристаллизованный рений имеет относительное удлинение <) = 25 - 28%, вольфрам в том же состоянии хрупок (<5 = 0). Однако механические свойства рения, так же, как других тугоплавких металлов, в сильной степени зависят от его чистоты. В табл. 24 показано влияние газов на механические свойства (при растяжении) плавленого рения.  [c.97]

Более глубокий вакуум (2-10 мм рт.ст.) используют в исследовательских работах и в различных областях техники. Например, физические свойства (ползучесть) сплавов из тугоплавких металлов (сплав ниобия и циркония FS-85) для космической техники  [c.250]

Иридий и осмий — самые тугоплавкие металлы платиновой группы. Стойкость иридия против окисления при высоких температурах является основным фактором, определяющим область его применения. Осадок иридия на молибдене, отожженный при 1000 °С, хорошо защищает основной металл от окисления. Иридий отличается высокой износостойкостью и возможно, что иридиевые покрытия или электролитические сплавы на основе иридия окажутся хорошим износостойким материалом в условиях высокотемпературного трения. Другие механические и электрические свойства иридия и осмия мало исследованы.  [c.76]

К сверхпроводникам первого рода принадлежат химически и физически однородные, чистые металлы. Сверхпроводимость первоначально была обнаружена в 1911 г. у свинца и ртути, в настоящее время установлено, что не менее 25 металлов обладают этими свойствами. Среди сверхпроводников имеются и благородные металлы, например, иридий с Ткр = = 0,14° К тугоплавкие металлы — молибден с Ткр = 0,92° К и вольфрам с Т кр = 0,0Г К и многие другие. Характерной особенностью сверхпроводников первого рода является параболическая зависимость критической напряженности  [c.278]

В энергетическом отношении атомно-водо-родпая сварка является в основном методом электрической сварки, при котором обратимые физико-химические процессы, протекающие в газовой атмосфере вольтовой дуги, способствуют наиболее эффективному развитию и использованию её тепловой мощности. Независимость источника тепла в сочетании с возможным широким диапазоном регулирования тепловой мощности пламени непосредственно в процессе сварки создает большую гибкость технологического процесса. Высокая температура атомно-водородного пламени позволяет применять его для сварки наиболее тугоплавких металлов. Восстановительные свойства молекулярного и особенно атомного водорода и его химическое взаимодействие с азотом являются условиями для наиболее эффективной защиты расплавленного металла от окисления и нитрирования.  [c.318]


В электролитах при восстановлении на катоде галогенидов, содержащих оксихлориды, образуется металл, содержащий кислород. Галогениды тугоплавких металлов имеют свойство к образованию двойных соединений с галогенидами щелочных металлов, например КзТ1С1б и КТ1С14.  [c.6]

Ряд сталей, цветных и тугоплавких металлов обладает попиженной свариваемостью, которая проявляется в изменении механических или физико-химических свойств металла в зоне сварного соединения по сравнению с основным металлом и в образовании сварочных дефектов в виде трещин, пор и т. п.  [c.229]

Приведены справочные сведения по физикомеханическим свойствам жаропрочных и тугоплавких металлов, а также по физико-механическим и эксплуатационным свойствам жаропрочных сплавов, применяемых в двигателесгроении внутреннего сгорания авиационной и ракетной техники.  [c.4]

В настоящее время возможности повышения жа юпрочности никелевых сплавов с равноосной структурой за счет их легирования тугоплавкими металлами приближается к пределу. Таким образом, от кристаллического строения лопаток зависят механические свойства и жаропрочность при высоких температурах.  [c.418]

В последние годы ишроко применяют металлизационный метод плазменного напыления, позволяющий наносить любые материалы, в том числе тугоплавкие металлы и окислы, создавая покрытия с заданными эксплуатационными свойствами износостойкие, коррозионно-стойкие, жаростойкие, электроизоляционные и др.  [c.110]

Контактные сплавы. В состав т частью благородные металлы в связи с их стойкостью к окислению. Однако из-за их низкой температуры плавления приходится для сильно нагруженных контактов применять сплавы тугоплавких металлов. В качестве примера рассмотрим некоторые сплавы (табл. 22.2). Золото-никелевые сплавы отличаются высокой твердостью, стойкостью к эрозии (иглообразованию) и к свариванию. Недостатком сплавов является склонность к окислению при мощной дуге. При 5% Ni = 1000° С, р =0,123 ом-мм м (для золота р =0,22 ом-лш /м). Сплав золота с цирконием (3%), помимо указанных достоинств, обладает стойкостью к окислению известны такие тройные сплавы на основе золота. Серебрено-палладиевые сплавы имеют высокую температуру плавления (1330° С), стойки к эрозии и свариванию и вдвое тверже серебра удельное сопротивление такого сплава при 40% Pd значительно р = 0,42 ом Эти сплавы обладают защитными свойствами про-  [c.294]

Использование ИПХТ-М наиболее целесообразно для следующих процессов выплавки сложнолегированных сплавов с большим содержанием компонентов, сильно различающихся физическими свойствами рафинировочной плавки химически активных и тугоплавких металлов получения высококачественных фасонных отливок металлотермического восстановления металлов из их соединений (оксидов, фторидов, хлоридов и Т.П.) переработки отходов химически активных металлов и их сплавов направленной кристаллизации металла при непрерывном получении слитка получение металлических порошков и др.  [c.55]

Всесторонние структурные исследования и анализ влияния различных структурных состояний на механические свойства тугоплавких металлов и сплавов с ОЦК-решеткой были выполнены В. И. Трефиловым, Ю. В. Миль-маном, С. А. Фирстовым с сотрудниками [9, 28].  [c.122]


Смотреть страницы где упоминается термин Тугоплавкие металлы — Свойства : [c.451]    [c.70]    [c.344]    [c.527]    [c.324]    [c.9]    [c.204]    [c.10]    [c.413]    [c.416]    [c.451]    [c.526]    [c.298]    [c.17]    [c.520]    [c.204]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.6 , c.32 , c.324 , c.324 , c.325 ]



ПОИСК



Металлов Свойства

Металлы легирующие — Свойства тугоплавкие

Металлы легирующие — Свойства тугоплавкие чистые

Металлы тугоплавкие

Металлы тугоплавкие 145 - Взаимодействие свойств в ЗТВ 147 - Кристаллизация металла шва 147 - Пористость при сварк

Методы выращивания и свойства монокристаллов тугоплавких металлов

Механические свойства тугоплавких металлов

Некоторые особенности объемноцентрированных кубических металВлияние примесей внедрения и границ зерен на механические свойства тугоплавких металлов

Общая сравнительная характеристика свойств тугоплавких металлов и соединений

СВОЙСТВА ТУГОПЛАВКИХ МЕТАЛЛОВ И СОЕДИНЕНИЙ

Сплавы сложнолегироваиные Длительная тугоплавких металлов — механические свойства 15 — Области применения 15 — Термическая обработка

Строение и свойства тугоплавких металлов и соединений

ТУГОПЛАВКИЕ МЕТАЛЛЫ И СПЛАВЫ Свойства тугоплавких металлов и сплавов (Большаков

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЖАРОПРОЧНЫХ И ТУГОПЛАВКИХ МЕТАЛЛОВ

Физико-химические и механические свойства тугоплавких металлов и соединений

Физико-химические свойства и обработка тугоплавких металлов и их сплавов

Физические свойства тугоплавких металлов

Химические свойства и коррозионная стойкость тугоплавких металлов



© 2025 Mash-xxl.info Реклама на сайте