Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб Уравнение равновесия

Жесткие пластины. Для таких пластин силы в срединной плоскости пренебрежимо мало влияет на изгиб. Уравнения равновесия пластин ортотропной  [c.126]

Это — уравнение равновесия пластинки, изгибаемой действующими на нее внешними силами. Коэффициент в этом уравнении называют жесткостью пластинки при изгибе или цилиндрической жесткостью.  [c.65]

Особым видом деформаций тонких пластинок являются продольные деформации, происходящие в самой плоскости пластинки и не сопровождающиеся ее изгибом. Выведем уравнения равновесия, описывающие такие деформации.  [c.69]


Изложенная в 11—13 теория изгиба тонких пластинок применима лишь к достаточно слабым изгибам. Забегая вперед, укажем уже здесь, что условием применимости этой теории является малость прогиба по сравнению с толщиной h пластинки. Теперь мы перейдем к выводу уравнений равновесия сильно изогнутой пластинки. Прогиб С при этом уже не предполагается малым по сравнению с h. Подчеркиваем, однако, что самая деформация по-прежнему должна быть мала в том смысле, что тензор деформации должен быть мал. Практически это обычно означает требование С < /, т. е. прогиб должен быть мал по сравнению с размерами I пластинки.  [c.75]

Уравнения равновесия значительно упрощаются в практически важном случае слабого изгиба стержней. Изгиб является слабым, если направление касательной t к стержню медленно меняется  [c.109]

Если приложенные к стержню внешние силы действуют в одной плоскости, то и изгиб стержня произойдет в одной плоскости. Эти две плоскости, однако, в общем случае не совпадают друг с другом легко найти угол между ними. Если а — угол между плоскостью действия сил и первой главной плоскостью изгиба (плоскостью X, г), то уравнения равновесия принимают вид  [c.111]

Вывести уравнение равновесия для слабого изгиба тонкого стержня (кругового сечения), имеющего е своем естественном состоянии форму дуси окружности и изгибаемого в своей плоскости приложенными, к нему радиальными силами.  [c.118]

Аналогичные результаты справедливы и для волн изгиба тонких стержней колебания изгиба предполагаются малыми. Уравнения движения получим, заменив в уравнениях равновесия слабо изогнутого стержня (20,4) силы —Кх, —Ку произведениями ускорений X, Y на массу pS единицы длины стержня (S — площадь его сечения). Таким образом,  [c.140]

При исследовании только растягивающих колебаний без изгиба можно воспользоваться уравнениями равновесия безмоментной теории (7.60). В последнем случае при Ха=у.р= з=0 уравнения (7.134) принимают вид [108] и [110]  [c.264]

Уравнения равновесия, совместности деформаций и граничные условия при изгибе пластины поперечной нагрузкой Р будут удовлетворены, если при решении задачи будет выбрана функция прогибов срединной поверхности пластины т в соответствии с уравнением (1У.21)  [c.66]

Частные случаи уравнений равновесия стержня в связанной системе координат. Рассмотрим нелинейные задачи изгиба первоначально искривленного стержня постоянного сечения следящими силой и моментом, приложенными к торцу (рис. 1.17). Сосредоточенные силы и моменты, приложенные в конечных сечениях (при е=1), можно учитывать и через краевые условия. В этом случае они в уравнения равновесия не входят и системы уравнений (1.64), (1.71) принимают следующий вид  [c.36]


При потере устойчивости относительно деформированного состояния (например, потеря плоской формы изгиба спиральной пружины см. рис. 3.4) необходимо предварительно определить критическую равновесную форму стержня [уравнения (3.10) — (3.14)], от параметров которой (и, Q, М ) зависят линейные уравнения равновесия стержня [уравнения (3.24) — (3.27) или уравнение (3.28)] после потери устойчивости. Так как критическая форма стержня заранее не известна, то требует проверки устойчивость всех состояний равновесия при непрерывном увеличении нагрузки. При решении нелинейных уравнений равновесия, рассмотренных в гл. 2, нагрузки, приложенные к стержню, были известны, поэтому, воспользовавшись одним из возможных методов численного решения уравнений равновесия (например, методом, использующим поэтапное нагружение), можно получить векторы, характеризующие напряженно-деформированное состояние стержня, соответствующее заданным нагрузкам.  [c.123]

Уравнений равновесия два, а неизвестных — три. Допустим, что стержни В и С растянуты. Тогда, пренебрегая изгибом балки, можно предположить, что  [c.218]

Ранее в 6.3 было указано, что в излагаемой приближенной теории изгиба пластин не учитываются деформации сдвига, отвечающие поперечным силам Qx Qy Поэтому последние не могли быть непосредственно выражены через прогибы с помощью закона Гука, а должны находиться из уравнений равновесия элемента пластины. Полученные зависимости (6.10) и представляют как раз такие выражения.  [c.156]

Расчет изотропных пластин на изгиб сводится к решению краевой задачи для дифференциального уравнения равновесия (6.12) относительно функции прогибов и> х, у)  [c.241]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

В 3.3 нас интересовали только нормальные напряжения при изгибе, поэтому из шести уравнений равновесия мы фактически составили только три. Проектируя силы, действующие слева от сечения на оси х ж у, мы получим величины, которые называются перерезывающими силами  [c.83]

Для решения задач устойчивости, как мы уже выяснили, уравнения равновесия должны составляться для деформированного состояния упругого тела. Соответственно, применяя вариационное уравнение, в нем необходимо удерживать квадратичные члены в формулах для деформаций, как это было сделано для общей теории в 12.2 и для задачи об устойчивости стержня в 12.3. В задачах изгиба пластин достаточно удерживать те квадратичные члены, которые зависят от прогиба w, производные от перемещений мы сохраним лишь в первой степени. Повторяя вывод 12.4, мы найдем, что формулы (12.4.3) сохранят силу и в этом случае, но компоненты деформации срединной поверхности нужно будет вычислять по формулам  [c.411]

Это основная и наиболее употребительная система дифференциальных зависимостей между М , Qy, гпх и qy при решении задачи о плоском поперечном изгибе балки. Если изгиб балки происходит в двух плоскостях, то учитывается система уравнений равновесия, выражающая поведение балки в плоскости Охг. Для этого случая положительные направления сил и моментов представлены на рис. 2.14 в проекции на плоскость Охг. Составив аналогично преды-  [c.35]


Изгиб балки, как отмечалось выше, может сопровождаться таким изменением положения точек оси, которое вызывает необходимость учета изменения геометрии этой оси, и уравнения равновесия в этом случае следует записывать для деформированного состояния. Рассмотрим изгиб балки в плоскости Оуг. При этом считаем, что расстояния точек от оси балки в ее деформированном и недеформированном состояниях неизменны и Уг = у (рис. 15.6). Внутренние поперечные силы Qy, и продольные силы Л/г, соответственно перпендикулярны и параллельны касательной к оси балки в ее деформированном состоянии. Выделим элемент длины dzi dz и рассмотрим его равновесие. Начало элемента в точке с координатой г, а конец — в точке с координатой 2 + dz. В точке с координатой 2 прогиб V (г), а в точке с координатой 2 + d2 прогиб v + du. Соответственно в этих точках повороты плоских сечений или касательных к осевой линии  [c.342]

Эти уравнения называются уравнениями Кармана. Первые два уравнения системы (16.62) — уравнения равновесия в направлении осей Ох и Оу, а третье уравнение — уравнение изгиба или уравнение равновесия элемента в направлении оси Ог. Если = = Qy = О, то уравнению изгиба можно придать вид  [c.390]

При исследовании задач изгиба воспользуемся вновь функцией напряжений ср(х, у). Легко видеть, что дифференциальные уравнения равновесия (б) и (в) предыдущего параграфа удовлетворяются, если принять  [c.360]

Дифференциальные уравнения равновесия стержня. Перемещения при изгибе  [c.194]

Полученное уравнение позволяет определять критические нагрузки (сосредоточенные и распределенные) для наиболее общего случая, когда изгибная жесткость стержня переменна по его длине. При изгибе прямолинейного стержня в плоскости (см. систему уравнений (13.15)) при малых отклонениях точек осевой линии стержня всегда имеются четыре граничных условия (по два на каждом конце стержня). Поэтому решение уравнения равновесия стержня должно содержать четыре произвольные постоянные.  [c.525]

Перейдем теперь к уравнениям равновесия гибких пластин при изгибе. Па рис. 6.3 п 6.4 показаны усилия.  [c.126]

В то же время все величины, характеризующие напряженное состояние при изгибе гибких пластин, могут быть выражены через перемещения и, V, ик При этом и уравнения равновесия гибкой пластины (6.13), (6.15) также можно представить через перемещения.  [c.134]

Как записывается уравнение равновесия осесимметричного изгиба круглых жестких пластин через перемещения  [c.145]

Пусть удлиненная пластина свободно опирается на жесткие опоры так, что кромки ее не могут смещаться. Тогда при изгибе пластины равномерно распределенным давлением q в срединной поверхности возникнут цепные усилия Nx, влияние которых следует учитывать в уравнении равновесия.  [c.149]

Предложенная задача дает достаточно широкий простор для исследовании. С одной стороны, можно ограничиться исследованием устойчивости по отношению к осесимметричному опрокидыванию. Такое решение трудностей не представляет. С другой стороны, интересно рассмотреть существование несимметричных форм равновесия и установить условия выхода кольца из плоскости кривизны с кручением. Здесь необходимо будет предварительно вывести уравнения равновесия несколько более общего вида, чем те, которые используются при исследовании устойчивости плоской формы изгиба.  [c.335]

Решение. Для проверки прочности надо найти наибольший изгибают,ий момент (построить эпюру а это, в свою очередь, требз ет определения опорных реакций , которые в данном случае нельзя найти из уравнений равновесия — балка один раз статически неопределима.  [c.231]

Представим себе брус, нагруженный внешними силами, вызывающими его прямой изгиб в плоскостп гОу (рис. 2.107, й). Рассечем его произвольной плоскостью, совпадающей с поперечным сечением бруса, и отбросим одну из частей, отделенных проведенным сечением (рис. 2.107, б). Для определения внутренних силовых факторов, возникающих в поперечном сечении бруса, надо составить уравнения равновесия для внешних и внутренних сил, действующих на оставленную часть. Из теоретической механики известно, что для плоской системы сил статика дает три уравнения равновесия. Если рассмотреть сумму проекций всех сил на ось z, то станет очевидным, что продольная сила N. равна нулю, так как внешние силы не дают проекций на эту осБТ Этй силы параллельны оси у и, следовательно, для обеспечения равновесия в поперечном сечении бруса должна возникнуть сила, направленная вдоль оси у, т. е. поперечная сила Qy. Наконец, третье уравнение равновесия — сумма моментов относительно оси л — убеждает нас в том, что в сечении должна возникнуть внутренняя пара сил, момент которой уравновесит момент внешних сил относительно оси х. Этот момент.  [c.258]

Упомянем коротко об особом случае деформаций тонких пластинок — о так называемых мембранах. Мембраной называют тонкую пластинку, подвергнутую сильному растяжению приложенными к ее краям внешними растягивающими силами. В таком случае можно пренебречь дополнительными продольными натяжениями, возникающими при изгибе пластинки, и соответственно этому можно считать, что компоненты тензбра равны просто постоянным внешним растягивающим напряжениям. В уравнении (14,4) можно теперь пренебречь первым членом по сравнению со вторым, и мы получаем уравнение равновесия  [c.79]

Вернемся снова к уравнениям (20,1). Произведенное нами пренебрежение вторым членом в правой стороне равенства может оказаться в некоторых случаях незаконным даже при слабом изгибе. Это — те случаи, в которых вдоль длины стержня действует большая сила внутренних напряжений, т. е. очень велико. Наличие такой силы вызывается обычно сильным натяжением стержня приложенными к его концам внешними растягивающими силами. Обозначим действующ,ее вдоль стержня постоянное натяжение посредством F , = Т. Если стержень подвергается сильному сжатию, а не растяжению, то сила Т отрицательна. Раскрывая векторное произведение [ dUdl], мы должны теперь сохранить члены, содержащие Т, членами же Z Fx VI Fy можно по-прежнему пренебречь. Подставляя для компонент вектора dtldl соответственно X", Y", 1, получим уравнения равновесия в виде  [c.113]


Таким образом, при изгибе стержней, концы которых закреплены, можно пользоваться уравнениями равновесия в виде (20,4), только если прогиб мал по сравнению с толщиной стержня. Если же б не мало по сравнению с h (но, конечно, по-прежнему S < L), то надо пользоваться уравнениями (20,14). Прл атом сила Т в этих уравнениях заранее неизвестна. При их решении надо сначала рассматривать Т как заданный параметр,, а затем по голученному решению определить Т согласно формуле (20,16), чем и определится связь Т с ариложен ными к стержню изгиба-кщими силами.  [c.114]

Решение. Определяем Ркр методом Эйлера. Находим такое значение силы Р, при котором наряду с исходной прямолинейной формой существует смежная риволинейная форма равновесия стержня (рис. 6). Упругий стержень представляет собой систему с бесконечно большим числом степеней свободы. Уравнение равновесия стержня в смежном состоянии будет дифференциальным уравнением изгиба  [c.256]

Изгиб в горизонтальной плоскости xOz (рис. 5.19, Э). Вал нагружен силами F, и F . Реакц1ш опор определим из уравнений равновесия  [c.172]

Таким образом, метод Ритца—Тимошенко позволяет заменить задачу о нахождении решения дифференциального уравнения (7.17) задачей о нахождении минимума потенциальной энергии. Такая замена возможна в связи с тем, что как дифференциальное уравнение изгиба пластинки (7.17), так и вариационное уравнение (з) являются уравнениями равновесия упругого тела. Покажем, что вариационное уравнение (з) включает в себя дифференциальные уравнения равновесия и условия на поверхности. Рассматривая вариационное уравнение (з) в форме  [c.157]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Если пластины находятся под действием плоской системы сил, расположенных в срединной плоскости пластины, и при этом плоская форма равновесия сохраняется, то поперечный изгиб w равен нулю, равны нулю изгибающие моменты, а уравнения равновесия в декартовых осях Oxyz имеют вид  [c.411]

Жесткие пластины. Теория изгиба жестких пластин начинает свое развитие с работ Софи Жермен и Лагранжа задолго до появления обш их уравнений Кармана, из которых уравнения равновесия жестких пластин могут быть получены как частный случай.  [c.129]

Гибкие пластины небольшого прогиба. Теория изгиба гибких пластин небольшого прогиба была предложена Сен-Веианом. Особенность этой теории состоит в том, что предполагается действие больших усилий N1, Ny, Т в срединной поверхности, настолько больших, что при составлении уравнения равновесия составляющими на иаправле-ипе оси 2 от этих усилий пренебрегать нельзя. В то же время, поскольку прогибы пластины и искривления срединной поверхности считаются малыми, то правой частью в уравнении совместности деформаций можно пренебречь,  [c.129]

Система уравнений равновесия узловых усилий позволяет определить узловые перемещения, а зная узловые перемещения , мы получаем выражение для функции прогиба w (8.45) и далее можем определить изгибающие и крутящие моменты, а также нормальные и касательные напрялгения при изгибе пластины по уже известным формулам.  [c.225]


Смотреть страницы где упоминается термин Изгиб Уравнение равновесия : [c.365]    [c.81]    [c.111]    [c.146]    [c.339]    [c.293]    [c.48]    [c.200]   
Прикладная теория пластичности и ползучести (1975) -- [ c.160 ]



ПОИСК



597—599 — Изгиб 597—608 — Расчет при давлении равномерно распределенном 602—606 — Уравнения дифференциальные и равновесия 598—600 — Условия граничны

Дифференциальные уравнения равновесия стержня. Перемещения при изгибе

Изгиб стержней уравнения равновесия

Стержни на упругом основами — Изгиб 223, 224 — Изгиб продольно поперечный 236—238 — Линия упругая— Уравнения 224, 228: 11 Х>гпбы 227: — Равновесие

Стержни на упругом основании — Изгиб 223, 224 — Изгиб продольнопоперечный 236—238 — Линия упругая — Уравнения 224, 228 Прогибы 227 — Равновесие

Теория изгиба пластинок Вывод уравнения равновесия тонкой упругой пластинки постоянной толщины

Уравнение дифференциальное изгиба (равновесия)

Уравнение изгиба

Уравнения равновесия сил

Уравнения равновесия уравнения

Эллиптический цилиндр решение уравнений равновесия для кручение-----, 331 изгиб



© 2025 Mash-xxl.info Реклама на сайте