Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Невырожденное отображение

Таким образом, производная невырожденного отображения периодов изоморфно отображает касательное расслоение базы на расслоение когомологий. Двойственный изоморфизм отображает расслоение гомологий на кокасательное расслоение базы. Этот изоморфизм и переносит имеющиеся в группе гомологий дополнительные структуры на базу.  [c.433]

В этой ситуации невырожденное отображение периодов индуцирует на базе пуассонову структуру. Действительно, построенный выше изоморфизм кокасательного пространства базы с группой гомологий (снабженной кососимметрической формой пересечений) определяет билинейную кососимметрическую форму пары кокасательных векторов. Скобка Пуассона двух функций в точке определяется как значение этой формы на дифференциалах функций.  [c.433]


Невырожденные отображения периодов. В этом и последующем пунктах параграфа приводятся результаты работ [52], [42], связывающие невырожденные отображения периодов голоморфных форм расслоения исчезающих когомологий с формой пересечения в гомологиях неособого слоя особенности /.  [c.103]

Невырожденность отображения периодов формы общего положения в случае квазиоднородной функций была доказана в работе [262], аналогичные утверждения анонсированы в [318].  [c.105]

Над Л S многообразия уровня V образуют локально тривиальное расслоение. Размерность ц базы равна размерности пространства когомологий слоя. Вещественная размерность слоя чётна (она кратна 4, если число п аргументов / нечётно). Чтобы приложить предыдущую теорию, мы должны только найти невырожденное отображение периодов.  [c.97]

Определение. Формой пересечения невырожденного отображения периодов называется поле 2-форм на слоях кокасательного расслоения Т (Л Е), индуцированное отображением периодов из формы пересечения на средних гомологиях (то есть на гомологиях половинной размерности) множеств уровня голоморфных функций п переменных.  [c.102]

Теорема 5. Форма пересечения к-го ассоциированного инфинитезимально невырожденного отображения периодов голоморфна вне дискриминанта и допускает голоморфное продолжение на дискриминант, если п < 2к — 2.  [c.102]

В случае, когда форма пересечений на пространстве гомологий вырождена, индуцированная структура на базе версальной деформации не является симплектической. Действительно, невырожденное отображение периодов определяет в этом случае вырожденные 2-формы на кокасательных пространствах базы (вне дискриминанта).  [c.105]

Флаг подмногообразий 22 Форма пересечений невырожденного отображения периодов 102  [c.336]

Это будет иметь место лишь тогда, когда матрица dr/dv невырожденная. Невырожденность в точке и О, v = и / этой матрицы позволяет разрешить второе из уравнений (7.68) относительно v и записать отображение L j в виде  [c.319]

С рассмотрим точку 0. По слабой теореме трансверсальности, отображение -а общего положения трансверсально С. Но это и означает невырожденность особых точек векторного поля г . >  [c.16]

Если отображение а(х) — невырожденное линейное преобразование a i и не зависят от х)  [c.362]

При = О имеем интегрируемую гамильтонову систему с одной степенью свободы. Предположим, что невозмущенная система имеет в области О три неустойчивых невырожденных положения равновесия 1, 2 и Zз, соединенных двоякоасимптотическими траекториями Г1 и Г2, как показано на рис. 27. Точки Zl и zз могут совпадать, однако мы требуем, чтобы Zl ф Z2. Точки Zl, Z2 к. zз — неподвижные точки отображения 50 за период I = 2тг невозмущенной системы, а Г1 и Г2 — инвариантные кривые этого отображения, заполненные точками, которые при положительных (отрицательных) итерациях отображения 50 стремятся к точке Z2 zl) для кривой Г1 и к точке zз ( 2) для кривой Г2. При малых значениях  [c.288]


Пусть — отображение за период i = 2тг возмущенной системы. Точка С, G — периодическая точка д периода т N, если д ( = = Периодические точки, и только они, являются начальными значениями (при t = 0) для периодических решений гамильтоновой системы. Если т — период точки (, то 2пт—период решения t z t, ), (Oi ) = С- Периодическая точка ( называется невырожденной, если собственные значения отображения z — g z, линеаризованного в окрестности точки (, отличны от единицы. Ясно, что некритические ограниченные линии уровня функции Но составлены сплошь либо из вырожденных периодических, либо из непериодических точек отображения до-  [c.294]

Докажем теорему 1 для простого, но важного для приложений случая п = 1. Пусть собственное значение отображения д не является корнем из единицы, и пусть х,у — симплектический базис для д. Собственные направления д — две прямые а = О и у = 0. Выше было показано, что любой однородный интеграл д имеет вид с хуУ з е М). Пусть д —другое отображение из группы С. Функция хуУ инвариантна относительно действия д, поэтому множество ху = О остается неподвижным при отображении д. Так как д — невырожденное линейное отображение, то точка х = у = О неподвижна, и отображение д либо сохраняет собственные направления отображения д, либо переставляет их. В первом случае д, очевидно, коммутирует с 5, а во втором случае имеет вид х —у ау, у — х. Отображение д — симплектическое, поэтому его матрица Т = р удовлетворяет условию Т У JT = J, откуда а =  [c.365]

Пусть D W — W — невырожденный линейный оператор, а D W — W —оператор, сопряженный с D. Отображение W х xW —у W xW, задаваемое формулами х = Dx, xj = D ) y, является каноническим. В частности, в новых переменных х[,.. , у[.....уравнения Гамильтона (4.3) будут снова иметь канонический вид с тем же гамильтонианом. Подходящим выбором оператора D кинетическую энергию можно привести к сумме квадратов Т = (у +. .. + у1)/2.  [c.386]

Если м = 1, то мы имеем дело с отображением обычной плоскости на себя, а инвариантные торы превращаются в окружности. Условие невырожденности означает, что для нормальной формы производная угла поворота окружности по площади, ограниченной этой окружностью, отлична от нуля (в неподвижной точке и, следовательно, в некоторой ее окрестности).  [c.379]

Б случае п = 1 условие невырожденности гарантирует устойчивость неподвижной точки отображения по Ляпунову. Заметим, что в этом случае условие отсутствия младших резонансов имеет вид  [c.379]

Примером применения методики Пуанкаре к системе с большим чем 2 числом степеней свободы является теорема Биркгофа о существовании бесконечного числа периодических решений, близких к данному линейно-устойчивому периодическому решению общего вида (или о существовании бесконечного числа периодических точек в окрестности неподвижной точки линейно-устойчивого невырожденного симплектического отображения пространства на себя). Доказательства заключаются в том, что сначала отображение аппроксимируется своей нормальной формой, а потом используется связь между неподвижными точками отображения и критическими точками производящей функции.  [c.391]

Предположим, что база — комплексное многообразие и что комплексные размерности базы и слоя расслоения когомологий одинаковы. Отображение периодов называется невырожденным, если его производные вдоль любых С-независимых векторов в каждой точке линейно независимы. Иными словами, отображение пе-  [c.432]

Дж. Най (I. Куе, 1984)заметил, что не все метаморфозы каустик и фронтов реализуются при движении фронта, определяемом уравнением эйконала (или Гамильтона — Якоби). Например, каустика системы лучей не может иметь вид губ с двумя точками возврата (хотя каустика лагранжева отображения — может). Дело в том, что включение лагранжева или лежандрова многообразия в гиперповерхность, заданную уравнением Гамильтона — Якоби или эйконала, накладывает топологические ограничения на сосуществование, а значит, и на метаморфозы особенностей (особенно в случае невырожденного, например, строго выпуклого по импульсам гамильтониана),— хотя сами по себе особенности реализуются и на гиперповерхности.  [c.455]


Определение 5.5.1. Пусть Е — линейное пространство. 2-тензор а Е X Е Ш называется невырожденным, если а v>-+ а(v, ) — изоморфизм Е на двойственное пространство Е. Этот тензор называется антисимметричным, если a v, w) = —a w, v). Невырожденная антисимметричная 2-форма называется симплектической формой. Линейное пространство с фиксированной симплектической формой называется симплектическим векторным пространством. Если (Е, а) и (F, ) — симплектические векторные пространства, то линейное отображение Т Е F называется симплектическим, если Т /3 = а  [c.226]

Можно ввести понятие трансверсальности критических точек функций как частный случай трансверсальности неподвижных точек отображений. А именно, пусть / М—>К является -функцией. Тогда отображение сдвига за единичное время градиентного потока является С -диффеоморфизмом относительно любой римановой метрики и его неподвижные точки — это в точности критические точки /. Таким образом, мы называем критическую точку р функции / невырожденной, если она является трансверсальной неподвижной точкой отображения сдвига за единичное время градиентного потока /. Чтобы показать, что это определение корректно, мы должны доказать, что оно не зависит от выбора римановой метрики для построения градиентного потока. Для этого выберем ортонормированный базис в пространстве и локальные координаты в окрестности точки р так,  [c.297]

В 1981 г. А. Н. Варченко и А. Б. Гивенталь (которому принадлежит также доказательство этой теоремы для исключительных групп) указали далекие ее обобщения. Евклидову структуру они заменили формой пересечений подходящего невырожденного отображения периодов семейства голоморфных дифференциальных форм на слоях расслоения Милнора версального семейства функций. Невырожденная форма пересечений определяет (в зависимости от четности числа переменных) либо локально плоскую псевдоевкли-дову метрику со стандартной особенностью на лежандровом фронте, либо симплектическую структуру, голоморфно продолжающуюся на фронт.  [c.456]

Все положительные меры эквивалентны, т. е. они имеют одну и ту же совокупность множеств меры нуль. Любая абсолютно непрерывная мера абсолютно непрерывна относительно любой положительной меры. Класс положительных мер инвариантен относительно диффеоморфизмов, а также относительно сюръективных дифференцируемых невырожденных отображений, т. е. отображений, якобиан которых (определитель матрицы частных производных в локальных координатах) обращается в нуль только на множестве меры нуль.  [c.193]

Производная любого отображения периодов определяет линейное отображение касательного пространства базы в слой когомологического расслоения. Невырожденное отображение периодов определяет изоморфизм пространства касательного расслоения базы с когомологическим расслоением.  [c.96]

Двойственный изоморфизм отправляет гомологическое расслоение базы в пространство её кокасательного расслоения. Таким образом, невырожденное отображение периодов отправляет все структуры, присутствующие на слоях гомологического расслоения, на кокаса-тельные пространства базы.  [c.96]

Пример 5. Предположим, что форма пересечений невырождена. В этом случае невырожденное отображение периодов индуцирует на ба-  [c.96]

Предположим, что форма пересечения невырождена. Оператор, обратный к оператору этой формы, определяет обратную форму на двойственном пространстве. В этом случае невырожденное отображение периодов индуцирует 2-форму на касательном пространстве базы (в дополнение к форме пересечений, определённой на кокасательном пространстве).  [c.103]

Определение. Обратной формой пересечений невырожденного отображения периодов называется образ обратной формы пересечений на пространстве когомологий под действием изоморфизма между когомологическим и касательным расслоениями, определённым отображением периодов.  [c.103]

Теорема 8. Невырожденное отображение периодов определяет пу-ассонову структуру на базе версальной деформации особенности (< о-же если форма пересечений вырождена).  [c.106]

Существуют различные методы построения криволинейных элементов. На практике наибольшее распространение получил способ отображения первоначально регулярных (прямосторонних) элементов при помощи невырожденного преобразования из локальной (ествст-венкой) системы координат в глобальную. При построении модели прокатки для обеспечения квадратичной аппроксимации скорости и линейной гидростатического давления использовались криволинейные лагранжевы элементы с девятью узлами. Квадратичные функции формы для них в естественной системе координат I, Т1 могут быть получены перемножением соответствующих одномерных функций формы  [c.289]

Для того чтобы соответствие между тройкой новых переменных и тройкой декартовых координат было взаимнооднозначным, требуется невырожденность соответствующего отображения, а чтобы  [c.17]

Обозначим матрицу размером 2 х 3 в правой части равенства (3.3) через R. Заметим, что дЖо/дрх = dS o/dipi = 0. Это вытекает из невырожденности задачи Эйлера-Пуансо и леммы Пуанкаре (см. 1 гл. 1). Пусть (Д, /г) 6 П Д°. Тогда ранг матрицы R равен 1. Значит, при фиксированном значении переменной I2, па инвариантных кривых отображения S кольца К на себя ( 1 настоящей главы), составляющих множество SSflD, матрица R тоже имеет ранг 1. Согласно лемме 1 множество 5S П D является ключевым для класса A D). Так как все миноры второго порядка матрицы Якоби R при любом фиксированном значении I2 являются аналитическими функциями в области D, то в области D х (ai, аг) ранг R равен 1, то есть функции Ж и зависимы.  [c.65]


Картина траекторий возмущенной задачи изображена на рис. 16. Более точно, на фиксированном трехмерном уровне интеграла энергии взята секущая двумерная поверхность. На рис. 16 изображены инвариантные кривые отображения последования. Изолированным точкам соответствуют невырожденные периодические траектории, а замкнутым кр"йвым, близким к концентрическим окружностям, — колмогоровские торы.  [c.230]

Ряд Маклорена интеграла (1.17) начинается с невырожденной квадратичной формы. Конечно, уравнения Гамильтона могут допускать вырожденный интеграл. По-видимому, теорема 3 справедлива и в том случае, когда вместо непрерывно дифференцируемых интегралов вида (1.17) рассматриваются 2тг-периодические по t интегргшы, представимые в окрестности точки х = у = О сходящимися степенными рядами. Этот результат, вероятно, можно доказать методом работы [59]. Необходимо проверить, что изолированные периодические точки отображения за период возмущенной системы (1.18) составляют ключевое множество для класса функций, аналитических в окрестности начала координат.  [c.318]

Условия невырожденности и изоэнергетической невырожденности независимы одно от другого, т. е. невырожденная система может быть изоэнергетически вырожденной, а изоэнергетически невырожденная — вырожденной. В многомерном п > 2) случае изоэнергетическая невырожденность означает невырожденность следующего отображения п — 1-мерного многообразия уровня функции Н от п переменных действия в проективное пространство размерности ге—1  [c.370]

Если п = 1, то получается сохраняющее площади отображение обычного кругового кольца на себя. Невозмущенное отображение представляет собой на каждой окружности I = onst поворот. Условие невырожденности означает в этом случае, что угол поворота от одной окружности к другой меняется.  [c.377]

Система равенств (21.6) определяет невырожденное аффкн-, нее отображение плоскости хоу на плоскость , еслГ-  [c.94]

Сначала рассмотрим случай, когда единица является собственным значением. Самая простая бифуркация появляется, когда график отображения имеет невырожденное касание с диагональю в точке бифуркации, локально не пересекая ее для любого большего близлежащего значения параметра, в то время как для меньших значений график пересекает диагональ трансверсально в двух близлежащих точках. Динамически это значит, что сжимающая и растягивающая неподвижные точки, существующие при каждом меньшем значении параметра, сливаются в точке бифуркации, образуя полуустойчивую точку (т. е. точку, притягивающую с одной стороны и отталкивающую с другой). Для больших значений параметра вблизи вовсе нет неподвижных точек. Конкретным примером этой ситуации служит семейство  [c.306]

Таким образом, каждое невырожденное дифференцируемое отображение одномерного многообразия конформно. В случае размерности два рассмотрим сферу 3 как сферу Римана, т. е. как комплексную плоскость С с одной добавленной бесконечно удаленной точкой. Тогда любая голоморфная функция / 3 — 3 , т. е. любая рациональная функция комплексной переменной г, является конформным отображением, хотя, быть может, и с критическими точками. В этом частном случае, однако, понятие конформности может быть перенесено и на критические точки. Конечно, весь комплексный анализ опирается на факт конформности голоморфных функций конформность здесь приводит к значительно большей жесткости, чем в одномерном действительном случае. Применимость высокоразвитых инструментальных средств анализа функций одной комплексной переменной делает комплексную динамику весьма интересной темой. В случае размерности выше чем два множество конформных отображений очень невелико, что отражает еще большую жесткость конформной структуры. В то время как это обстоятельство имеет далеко идущие геометрические следствия (жесткость по Мостову и т. д.), многомерные конформные структуры играют весьма ограниченную роль в традиционной теории динамических систем.  [c.387]


Смотреть страницы где упоминается термин Невырожденное отображение : [c.507]    [c.219]    [c.331]    [c.246]    [c.517]    [c.217]    [c.294]    [c.295]    [c.247]   
Особенности каустик и волновых фронтов (1996) -- [ c.0 ]



ПОИСК



Инфинитезимально невырожденное отображение периодов

Невырожденное отображение периодов

Отображение

Отображение Виета инфинитезимально невырожденное

Отображение Виета невырожденное

Отображение отображение

Точка критическая для отображени невырожденная (морсовская

Форма пересечений невырожденного отображения периодов



© 2025 Mash-xxl.info Реклама на сайте