Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Релаксация поверхности

Упругопластическое деформирование металла приводит к возникновению в поверхностном слое заготовки остаточных напряжений, растяжения или сжатия. Напряжения растяжения снижают сопротивление усталости металла заготовки, так как приводят к по явлению микротрещин в поверхностном слое, развитие которых ускоряется действием корродирующей среды. Напряжения сжатия, напротив, повышают сопротивление усталости деталей. Неравномерная релаксация остаточных напряжений искажает геометрическую форму обработанных поверхностей, снижает точность их взаимного расположения и размеров. Релаксация напряжений, продолжающаяся в процессе эксплуатации машин, снижает их качество и надежность.  [c.268]


Накопление дефектов происходит в локализованных областях у вершин трещин, поэтому релаксация напряжений материала реализуется в виде его разрушения. Напряжения в зоне накопления дефектов, достигшие стадии формирования поверхностного переходного слоя, трансформируются в поверхностную энергию. Так в процессе разрушения материала образуются новые поверхности, обладающие свободной энергией.  [c.311]

Далее, рассмотрим обратный предельный случай, когда о) > > % а . Другими словами, время релаксации велико по сравнению с периодом колебаний в волне, и за время каждого периода не успевает произойти заметное выравнивание возникающих при деформации разностей температур. Было бы, однако, неправильным считать, что определяющие поглощение звука градиенты температуры порядка величины То/а. Тем самым мы учитывали бы лишь процесс теплопроводности внутри каждого кристаллита. Между тем основную роль в данном случае должен играть теплообмен между соседними кристаллами М. А. Исакович, 1948). Если бы кристаллиты были теплоизолированы друг от друга, то на границе между ними создавались бы разности температур того же порядка величины Тб, что и разности температур в пределах отдельного кристаллита. В действительности же граничные условия требуют непрерывности температуры при переходе через поверхности соприкосновения между кристаллитами. В ре-  [c.183]

Природа испускания звуковых волн электронами в металле обсуждалась Клейном [147] с несколько другой точки зрения. Клейн предположил, что для сверхпроводимости может оказаться существенной относительная величина неопределенности энергии Дг, вычисляемой по времени релаксации и энергии возбуждения г электрона у поверхности Ферми. Предложенный критерий сверхпроводимости заключается в том, что As/i l для малых 3, порядка /с кр., причем уменьшается до нуля с возрастанием  [c.775]

Допустим, что граничные условия на всей поверхности тела заданы в перемещениях. Очевидно, что распределение деформаций и перемещений в упругом теле зависит только от одной упругой постоянной — коэффициента Пуассона. Следовательно, деформированное состояние вязкоупругого тела в любой момент времени t совпадает с деформированным состоянием упругого тела. Если граничные условия во времени остаются постоянными, то и деформированное состояние вязкоупругого тела остается неизменным. Компоненты тензора напряжений меняются во времени. Их значения легко найти из физических соотношений, а графики изменения напряжений во времени оказываются подобными кривым релаксации, которые строятся по результатам испытаний образцов при фиксированных во времени деформациях. Итак, в рассматриваемом случае решается задача о релаксации вязкоупругого тела.  [c.352]


Толщина релаксации б характеризует глубину проникновения в, поток жидкости возмущений, возникающих на поверхности твердой стенки, и следовательно, представляет собой условную границу между возмущенной и невозмущенной областями потока.  [c.382]

Приращение поверхностной энергии бГ — величина положительная она характеризует увеличение внутренней энергии тела, в то время как приращение потенциальной энергии деформации — величина отрицательная, так как эта часть энергии выделяется телом (благодаря релаксации напряжений в связи с появлением новых, свободных от нагрузки поверхностей тела). Подставляя (25.4) в (25.3), получим  [c.730]

Здесь принято, что работа внешних сил равна нулю, а тело с трещиной — идеально упругое во всех своих точках. Левая часть равенства (3.11) представляет собой приращение внутренней энергии тела. Приращение поверхностной энергии положительно, так как внутренняя энергия увеличивается. Приращение потенциальной энергии деформации отрицательно, так как внутренняя энергия уменьшается (вследствие релаксации напряжений в связи с появлением новых свободных от нагрузок, поверхностей тела).  [c.34]

Если станина имеет закаленные.направляющие, то процессы деформации вызываются также структурными превращениями в закаленном слое и релаксацией остаточных напряжений, возникших при закалке. Закаленные поверхности становятся вогнутыми, причем основная часть деформации (70—80%) происходит в первые 2—3 месяца.  [c.85]

Первоначальная стадия коррозии имеет существенное значение при анализе коррозии (износа) металла, протекающей в условиях частых разрушений оксидных пленок. Такие ситуации, например, имеют место при износе труб поверхностей нагрева котла при их периодической очистке от золовых отложений, особенно когда периоды между циклами очистки меньше времени релаксации, так как интенсивность коррозии в первоначальной стадии практически всегда больше, чем в основной стадии.  [c.93]

Первый механизм коррозии протекает в чистой газовой среде либо под влиянием отложений золы, коррозионная активность которых со временем не изменяется. В таком случае в течение времени релаксации коррозии на чистой поверхности корродирующего материала образуется оксидная пленка со стабильными диффузионными свойствами.  [c.94]

При воздействии второго механизма коррозии поверхность металла быстро покрывается равномерной оксидной пленкой. Из-за быстрого возникновения оксидной пленки коррозия за очень короткое время, намного меньшее времени релаксации, переходит от кинетического к диффузионному или промежуточному режиму окисления. Быстрое образование на поверхности металла защитной оксидной пленки позволяет рассматривать коррозию во всем диапазоне времени т тр протекающей при постоянной степени показателя окисления (при заданной температуре), а изменение интенсивности коррозии в переходном процессе выражается в изменении лишь множителя А в формуле (3.7). Таким образом, в первоначальной стадии коррозии величина А при постоянной температуре металла зависит от времени и изменяется от максимального значения, соответствующего моменту т==0, до величины, имеющей место при коррозии под влиянием стабильных  [c.95]

В рассматриваемом случае время релаксации определено условиями формирования на поверхности металла оксидной пленки со стабильными диффузионными свойствами и оно заметно ниже времени релаксации, когда коррозия на этой стадии определена процессами перехода первоначальных золовых отложений в стабильные.  [c.163]

Одним из наиболее существенных факторов, ускоряющих коррозионно-эрозионный износ труб поверхностей нагрева, являются периодические разрушения оксидной пленки металла в циклах очистки. Поскольку периоды между циклами очистки поверхностей нагрева котла то имеют один и тот же порядок со временем релаксации коррозии, то очевидно, что большое влияние на износ труб в условиях их очистки должны оказывать первоначальная стадия коррозии.  [c.191]

Хрупкое разрушение совершается сколом (рис. 5.1, а) при напряжениях ниже экстраполированного хода температурной зависимости предела текучести. В данной области наблюдается значительный разброс значений разрушающего напряжения. Разброс определяется состоянием металла (литой, рекристаллизованный, деформированный) и качеством подготовки поверхности образца, поскольку разрушение в этой области обусловлено наличием, с одной стороны, внутренних и поверхностных дефектов образца, концентрирующих напряжения, с другой — высоким уровнем сопротивления движению дислокаций, что практически исключает возможность релаксации этих напряжений. Действительно, как показывает оценка с использованием уравнения Гриффитса (5.2), дефект размером порядка 1 мкм должен вызвать разрушение молибдена при напряжениях, не превышающих предел текучести. В случае более крупных дефектов, которые всегда существуют в технических сплавах, особенно литых, разрушение при отсутствии релаксации напряжений может происходить и при более низких напряжениях.  [c.205]


Однако это уравнение нельзя использовать в случае иапытаний коррозии под напряжением из-за отсутствия данных относительно энергии активации Е или расстояния 1 между центрами адсорбции на поверхности разрушения. Сопоставление поверхности разрушения с поверхностью порошков неорганических окислов, описанных ранее, представляется необоснованным. Поверхности раздела, образующиеся в процессе разрушения, содержат цруппк с ненасыщенными связями и электрические заряды, отсутствующие обычно на поверхности. порошков, которые имеют достаточное время для релаксации поверхности. Часто делается допуще- ние, что энергия активации Е несколько меньше, чем теплота адсорбции Q. Однако такое допущение будет совершенно неверным если энергетиче1с кий барьер между центрами адсорбции мал. вследствие перекрывания силовых полей.  [c.97]

В частности, слишком большая поправка на релаксацию поверхности приводила к лишенным физического смысла отрицательным значениям поверхностной энергии солей лития. Таскер вновь вычислил значения у, и поверхностную структуру некоторых граней галогенидов щелочных металлов, используя уточненные потенциалы парного взаимодействия.  [c.176]

Регибридизация химических связей. Что происходит с разорванными связями при расколе кристалла (или при ионном травлении), как протекает релаксация поверхности после ее образования Эти центральные для физики поверхности вопросы, естественно, не могут быть разрешены в рамках структурных исследований на отре-лаксировавших квазиравновесных поверхностных фазах. Весьма информативными в этом отношении являются спектры ЭПР от неспаренных электронов оборванных связей. Наиболее детально исследованы спектры ЭПP fY атомарно-чистых поверхностей Si, Ge и графита. У последнего в зр -гибридизации находятся атомы призматических граней (разорванные о-связи). Сигналы ЭПР от этих материалов представлены на рис.5.2, а. Сопоставление ширин линий АН в ряду С, Ge и Si (табл.5.1) соответствует последовательному изменению констант спин-орбитальной связи для этого ряда и является одним из доказательств того, что это сигналы действительно от атомов данных материалов, а не примесей. Для кремния это подтверждается также обнаруженной сверхтонкой структурой (СТС) от изотопов Si , обладающих ядерным спином.  [c.153]

Теоретические расчеты энергетического спектра поверхности (ПО) А В указывают на то, что на идеальной поверхности должны существовать ПЭС, энергетические уровни которых частично попадают в запрещенную зону объемных состояний — см. рис.5.11. Релаксация поверхности приводит к смещению зон ПЭС к краям запрешенной зоны, так  [c.172]

Рекомбинационно-стимулированная диффузия 273 Релаксационная спектроскопия глубоких уровней (РСГУ) 97 Релаксация поверхности 149, 153, 172 Рентгеновская фотоэлектронная спектроскопия 135-137  [c.282]

В металле, где имеется большое количество электронов проводимости, взаимодействие их с гиперзвуковой волной также может возникать за счёт возникновения локальных (местных) электрич. полей при колебаниях ионов решётки. Так, напр., при прохождении продольной УЗ-вой волны цепочки положительно заряженных ионов сжимаются и растягиваются. При этом меняется плотность отрицательно заряженных электронов и их энергия. После отклонения энергии электронов от её среднего значения это значение восстанавливается, но не сразу, а в течение нек-рого времени — времени релаксации. Происходящий здесь релаксационный процесс в определённой степени аналогичен релаксационному процессу, к-рый происходит при распространении УЗ-вой волны в диэлектрике (см. Релаксация), а энергия упругих волн также переходит в тепло. Затухание упругих волн в металлах оказывается пропорциональным частоте, поэтому этот эффект сильно сказывается в области Г. Электронный характер затухания упругих волн в металлах проявляется, в частности, в том, что коэфф. затухания в сильной степени зависит от внешнего магнитного поля. Изучение затухания Г. в металлах, обусловленного электронами проводимости, позволяет получить важные характеристики металлов (время релаксации, поверхность Ферми, энергетич. щель в сверхпроводниках и др.).  [c.88]

Действительно, на продольных щлифах разрушенных образцов были обнаружены такие остановленные различными границами микротрещины разной длины (рис. 2.16). У многих микротрещин, например у трещин, изображенных на рис. 2.16,6, хорошо видно затупление вершин, вызванное пластической релаксацией после остановки микротрещины границами зерен (или фрагментов). Все обнаруженные микротрещины находились на расстояниях, не превышающих 100 мкм от поверхности разрушения. Их средняя плотность в этой области составляла примерно 1,2- 10 2 мм , что соответствует оценкам [121].  [c.88]

После выхода на режим эксплуатации и до момента времени т= 10 000 ч наиболее сильное изменение НДС происходило в районе корня недовальцовки. Окружные напряжения аее увеличились в этой зоне до 970 МПа (рис. 6.18) накопленная пластическая деформация (параметр Одквиста)х равняется 7,1 % На поверхности процесс деформирования происходит в условиях релаксации напряжений аее уменьшается до 560 МПа, х за этот промежуток времени увеличивается до 4,2 %.  [c.356]

Распределение окружной компоненты аее и интенсивности at напряжений в момент начала НТО представлено на рис. 6.20, а. Видно, что вследствие снижения при Т = 450 °С предела текучести в области у поверхности произошло снижение уровня напряжений а,- 350 МПа, аее = 350 МПа. В процессе НТО после выхода на режим за счет ползучести происходит релаксация напряжений, особенно активно в областях у поверхности максимальное значение 0ее снизилось с 350 до 330 МПа (рис. 6.20,6). В корне недовальцовки существенных изменений не происходит. Распределение ОН после окончания процесса НТО и снижения температуры до 20 °С показано на рис. 6.21. Максимальное значение аее на поверхности 320 МПа, в корне недовальцовки — 200 МПа.  [c.358]


Магниторезистивный эффект — увеличение сопротивления металлического образца, помещаемого в магнитное поле,— описывается довольно сложной теорией. Магниторезистивный эффект будет наблюдаться в том случае [1], когда поверхность Ферми несферична, и особенно когда она содержит вклады электронов и дырок или электронов из двух зон. Если существуют два типа носителей, имеющие различный заряд, массу или время релаксации, то магнитное поле будет влиять на них по-разному. Соответственно будет изменяться и полная проводимость, представляющая собой векторную сумму двух компонентов. Этот механизм приводит к появлению поперечного магниторезисторного эффекта, который примерно пропорционален квадрату напряженности магнитного поля Я, а в сильных полях приходит к насыщению. Особый случай представляет металл, у которого различные типы носителей имеют одинаковое время релаксации. Тогда изменение сопротивления Ар под действием магнитного поля можно записать в виде  [c.250]

Движение вакансий задерживается скоплениями примесных атомов, границами фаз и структурных составляющих, поверхностями кристаллических блоков (внутрпзеренные кристаллические образования размером в несколько сотых долей микрона). Распространение первичных трещин эффективно блокируют включения пластичных фаз, расположенные на пути трещины, в которых происходит релаксация напряжений. Измельчение кристаллических блоков, увеличение степени нх разориентировки, а также искажения атомно-кристаллической решетки, вносимые при.чесями и возникающие при наклепе, выделении вторичных фаз и образовании неравновесных (закалочных) структур, сокращая пробег дислокаций, повышают  [c.290]

Отсутствие времени в термодинамических соотношениях не означает, однако, что при их выводе не используются никакие сведения о кинетике процессов. Достаточно обратить внимание на физический смысл начальных определений, таких как изолированная система, тепловой контакт, открытая система и другие, чтобы убедиться в наличии общих кинетических условий в любой термодинамической задаче. Например, понятие изолированности означает пренебрежимо малую скорость релаксационного процесса в большой системе, включающей в себя рассматриваемую изолированную систему и внешнюю среду. Последняя же, чтобы выполнять роль резервуара неограниченной емкости с постоянными характеристиками на всбй граничной поверхности, должна, наоборот, обладать бесконечно большими скоростями релаксации по всем переменны . Смысл кинетиче-  [c.33]

V и gradit Е зависят от функции (к) интегралы (13.13) и (13.14) изменят(5Я даже, если оставить постоянным, и, во-вторых, изменится время релаксации. Мы не будем касаться первого. эффекта, так как он одинаков для элек-тро- и теплопроводности и равен нулю в соотношениях (15.2)—(15.4), а остановимся лишь на изменении -с. Если время релаксации определяется вертикальным движением (как в случае теплового сопротивления при низких температурах), то i зависит только от локальных свойств поверхности Ферми и сравнительно нечувствительно к ее форме. Если же время релаксации определяется горизонтальной многоступенчатой диффузией (как в случае электрического сопротивления р, при низких температурах), то оно будет сильно зависеть от формы поверхности Ферми.  [c.270]

В принципе теплопроводность можно рассчитать на основе (18.5) точно так же, как она получалась из соотношения (13.7) в п. 13. Практически проводимость была получена из соотношения (18.4) только в случае сферической симметрии, когда однозонная структура не дает изменения электрического и теплового сопротивлений, а приводит только к эффекту Холла. В обшем случае можно показать, что гальвано-магнитный эффект равен нулю, если все состояния на поверхности Ферми имеют одинаковое время релаксации. Следовательно, нужно использовать более сложную зонную модель. Единственным случаем, для которого был получен гальвано-магнитный эффект, является случай двух перекрывающихся зон, каждая из которых сферически симметр гана.  [c.277]

При взаимном перемещении поверхностей трения молекулы-"вор-синки" как бы изгибаются в противоположные стороны, Иа самом деле происходит сдвиг с перескоком элементов квазикристаллической структуры пленки. На восстановление ориентации молекул в прежнее положение - перпендикулярно поверхности тел - требуется некоторый промежуток времени, который можно рассматривать как время релаксации.  [c.69]

Три уровня изучения поведения материалов. Для решения инженерных задач надежности необходимо знать закономерности изменения выходных параметров машины и ее элементов во времени. Так, надо оценить деформацию деталей, износ их поверхности, изменение несущей способности из-за релаксации напряжений или процессов усталости, повреждение поверхности из-за коррозии и т. д., т. е. рассмотреть макрокартину явлений, происходящих при эксплуатации машины. Однако для объяснения физической сущности происходящих явлений и для получения таких закономерностей, которые в наиболее общей форме отражают объективную действительность, необходимо также проникнуть в микромир явлений и объяснить первопричины взаимосвязей.  [c.59]

Постоянная А, входящая в (3,24) —(3,27), может быть найдена, если известны свойства дефекта, определяющие его способность деформировать окружающую упругую среду. Для характеристики дефекта часто пользуются моделью по точечного дефекта, а сферического включения, помещенного в упругую, деформированную нм среду (матрицу). В рамках этой модели принимается, что в ун-2)угой, однородной, изотропной среде вырезано сферическое отверстие радиуса г, в пего вставлено сферическое включение (модули упругости которого могут и отличаться от модулей матрицы) радиуса Г2, причем может быть как больше, так и меньше Г. Поверхности сферы и отверстия приведены в соприкосновение п соединены. После отого произошла релаксация системы, в результате которой граница мезкду включением и матрицей установилась при некотором иромезкуточном между Гх н Г2 значении  [c.62]

Величина В зависит от периода между разрушениями оксидной пленки и температуры металла. Поскольку с течением времени интенсивность коррозии металла в первоначальной стадии снижается и приближается к коррозии на оснрвной стадии, то и величина В с увеличением времени уменьшается и в случае, когда т>тр, равняется единице. Что касается влияния температуры на В, то оно зависит от условий образования на поверхности металла в периоде релаксации стабильной оксидной пленки либо перехода первоначальных отложений в стабильные. Так, например, при коррозии материала под влиянием золы топлива, коррозионная активность которой со временем не изменяется, величина В при одном и том же значении периода между разрушениями оксидной пленки с увеличением температуры снижается (рис. 4.26). Такой же характер зависимости В от температуры имеет место и в условиях сжигания сланцев (рис. 4.19) когда процесс коррозии в первоначальной стадии определен снижением коррозионной активности отложений золы со временем.  [c.193]

При образовании скопления дислокаций и соответствующей концентрации напряжений у вершины скопления представляется весьма вероятным, что пластическая деформация в соседнем зерне начнется в результате работы зернограничных источников [54, 102]. Удаляясь от поверхности зерна, дислокации, эмитированные этими источниками, взаимодействуют с дислокациями сетки Франка и могут создать новые источники типа источников Франка — Рида. Поскольку эти новые источники не заблокированы примесями, они оказываются способными либо к размножению полных дислокаций, либо (при достаточно высоком уровне напряжений сдвига) — к размножению частичных дислокаций, т. е. к образованию двойника, например, по полюсному механизму Коттрелла — Билби или по механизму Шлизви-ка [20] (рнс. 2.17). Развитая в работе [22] модель, в которой двойникование начинается после частичной (за счет скольжения) релаксации концентраторов напряжений, приводит к получению аналогичной уравнению Холла — Петча для скольжения зависимости напряжения начала двойникования от размера зерна  [c.60]


Анализ напряженного состояния поверхности охлаждаемых рабочих лопаток показал, что растягивающие суммарные напряжения, обусловленные действием центробежных сил и термическими напряжениями из-за неоднородности температурного поля, невелики. Вследствие этого наибольшую вероятность имеет разрушение покрытий в результате накапливающихся растягивающих деформаций, вызываемых при охлаждении термическими напряжениями из-за несоответствия КТР. Чтобы этого не происходило, должны соблюдаться условия КТР покрытия КТР сплава во всем температурном интервале ниже температуры хрупко-вязкого перехода в покрытии. В таком случае в них при охлаждении возникают неопасные сжимающие напряжения, не переходящие в растягивающие при нагревании. Если данное условие не может быть выполнено, необходимо, чтобы при температурах ншке температуры хрупко-вязкого перехода покрытие обладало запасом пластичности, достаточным для релаксации напряжений, обусловленных несоответствием 1ГГР.  [c.186]


Смотреть страницы где упоминается термин Релаксация поверхности : [c.172]    [c.8]    [c.348]    [c.70]    [c.89]    [c.151]    [c.119]    [c.259]    [c.273]    [c.235]    [c.82]    [c.600]    [c.315]    [c.16]   
Основы физики поверхности твердого тела (1999) -- [ c.149 , c.153 , c.172 ]



ПОИСК



Остаточные напряжения на поверхности раздела деформационные релаксация

Релаксация



© 2025 Mash-xxl.info Реклама на сайте