Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решетка атомная кристаллическая

Решетка атомная кристаллическая 226,  [c.828]

В основе создания сверхпрочных материалов лежит современное представление о дислокациях (искажения атомно-кристаллических пространственных решеток), как о первопричине наблюдающегося расхождения между реальной прочностью металлов и теоретической, предсказываемой на основании величины атомных связей в кристаллических решетках.  [c.171]

Титановые сплавы. Титан имеет две аллотропические модификации. До 882 С существует (У.-титан с гексагональной атомно-кристаллической решеткой, выше — р-титан с ОЦК-решеткой. Введение легирующих элементов значительно изменяет температуру аллотропического превращения и области а- и р-фаз.  [c.186]


Другим препятствием служат межзеренные прослойки (поверхности спайности), обладающие из-за наличия примесей сильно искаженной атомно-кристаллической решеткой, иногда отличной по типу от кристаллической решетки зерна. Образуется своеобразный межзеренный барьер, эффективно тормозящий распространение повреждений. Для того, чтобы преодолеть этот барьер, требуется напряжение, значительно превосходящее напряжение, вызывающее внутрикристаллитные сдвиги.  [c.290]

В ЗТВ в процессе нагрева и охлаждения при сварке, а также в шве при охлаждении получают развитие целый ряд фазовых структурных превращений. Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами, и разграниченных с ними поверхностями раздела (межфазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяются энтропия, теплосодержание и в момент превращения теплоемкость стремится к бесконечности. В связи с этим фазовое превращение сопровождается выделением или. поглощением теплоты. При структурных превращениях (переходах FI рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания, скачкообразным — теплоемкости, и не сопровождаются выделением теплоты.  [c.491]

При образовании твердых растворов атомы легирующих элементов искажают симметрию электрического поля атомно-кристаллической решетки железа, что вызывает изменение свойств сплава, особенно физических и химических.  [c.47]

Железо—металл, содержащий химический элемент железо (Ре) и другие химические элементы лишь в виде примесей или загрязнений. Железо служит основой железоуглеродистых сплавов (стали и чугуна), а также является промышленным металлом (железо высокой чистоты, техническое железо). Оно имеет несколько модификаций (форм) атомно-кристаллической решетки а-железо в интервале температур от 20 до 910 °С у-железо в интервале температур от 910 до 1400 °С б-железо от 1400 °С до температуры плавления.  [c.361]

В-третьих, во время превращения в металле изменяются тип атомно-кристаллической решетки, величина энергии связи атомов и, как следствие, значение модуля упругости Е, Скачкообразное изменение Е вызывает аналогичное скачкообразное изменение Дет )  [c.175]


Особенности атомно-кристаллического строения изучаются с помощью рентгеноструктурного анализа. Этот вид анализа основан на дифракции рентгеновских лучей рядами атомов в кристаллической решетке.  [c.71]

Анизотропия кристаллов. А-н изотропией называется различие свойств кристаллов в направлениях различных кристаллографических плоскостей. Вследствие правильного расположения атомов в кристаллической решетке атомная плотность или коли-  [c.18]

В атомно-кристаллической решетке реальных кристаллов наблюдается очень небольшое количество вакансий подавляющее боль-  [c.21]

У положительных дислокаций лишняя атомная полуплоскость АВ расположена выше плоскости скольжения, а у отрицательных — ниже ее. При этом положительная дислокация образуется и перемещается в атомно-кристаллической решетке слева направо.  [c.25]

Отрицательная дислокация, наоборот, образуется и переме-f щается в атомно-кристаллической решетке справа налево.  [c.25]

На фиг. 11,6 дано схематическое изображение выхода винтовой дислокации на грань кристалла по Франку, который отмечает, что движение винтовых дислокаций в атомно-кристаллической решетке менее ограничено, чем линейных.  [c.26]

Перемещение дислокаций. Дислокации обладают свойством перемещаться в атомно-кристаллической решетке. Это перемещение осуществляется или путем скольжения, или путем восхождения.  [c.27]

Наблюдение дислокаций в атомно-кристаллических решетках под электронным микроскопом стало возможно благодаря усовершенствованию их конструкции, позволяющей различать кристаллографические плоскости решетки с расстоянием друг от друга в 6,9 А. Это позволило исследовать решетку кристалла фталоцианина платины, у которого расстояние между плоскостями (201) около 12 А.  [c.31]

Наблюдение дислокаций и скоплений точечных дефектов на просвет под электронным микроскопом в тончайших пленках металлов и сплавов, например толщиной около 1000 Л, является убедительным методом опытного доказательства их существования. Хотя плоскости атомно-кристаллической решетки здесь не выявляются, но дислокации и скопления точечных дефектов обнаруживаются в виде темных линий,  [c.31]

Фиг. 33. Схема изменений в атомно-кристаллической решетке при деформации Фиг. 33. Схема изменений в атомно-кристаллической решетке при деформации
Рентгенографический метод. Метод рентгенографического структурного анализа в последнее время успешно применяется как при исследовании превращений аустенита при закалке, так и при изучении процессов отпуска закаленной стали. Он позволяет исследовать изменения атомно-кристаллической решетки при превращениях.  [c.179]

Карбиды по характеру своей атомно-кристаллической решетки разделяются на две группы.  [c.308]

Существующие в природе кристаллы, которые получили название реальных, не обладают соверщенной атомно-кристаллической структурой. Их решетки имеют различного рода дефекты, т. е. отклонения от правильного периодического расположения атомов.  [c.8]

Второе, диаметрально противоположное направление, стремящееся к увеличению степени неоднсфодности и числа искажений кристаллической решетки, разумеется, нс позволяет приблизиться к теоретической прочности, но может существенно повысить реальную прочность технических металлов (рис. 85). Пределом является плотность дислокаций порядка 10 см , когда расстояния между дислокациями приближаются к межатомным, атомно-кристаллическая решетка сильно искажается, вследствие чего прочность падает. Первым этапом на этом пути являются легирование и термообработка, упрочняющий эффект которых в сущности сводится к увеличению плотности дислокаций.  [c.174]

Движение вакансий задерживается скоплениями примесных атомов, границами фаз и структурных составляющих, поверхностями кристаллических блоков (внутрпзеренные кристаллические образования размером в несколько сотых долей микрона). Распространение первичных трещин эффективно блокируют включения пластичных фаз, расположенные на пути трещины, в которых происходит релаксация напряжений. Измельчение кристаллических блоков, увеличение степени нх разориентировки, а также искажения атомно-кристаллической решетки, вносимые при.чесями и возникающие при наклепе, выделении вторичных фаз и образовании неравновесных (закалочных) структур, сокращая пробег дислокаций, повышают  [c.290]


Металлические связи образуют структуры путем взаимодействия положительных ионов решетки (атомных остатков) и делока-лизированных, обобществленных электронов. Эти связи являются гомеополярными. Они по существу не относятся к химическим, и понятие металлические связи можно считать качественным, так как металлы не имеют молекулярного строения, а их атомы соединяются в кристаллические образования. Этот вид связи и обусловливает высокую прочность, пластичность и электропроводность металлов. Энергия связи — около Ю Дж/моль. Прочная металлическая связь наблюдается при образовании интер-металлидов и некоторых твердых растворов. Одна из ее особенностей — отсутствие насыщения, определяемого валентностью соответствующих атомов.  [c.10]

Итак, предположим, что находящееся в кристаллической решетке атомное ядро испускает 7-кванты. Импульс отдачи будет, очевидно, таким же, как и в случае свободного ядра, однако теперь он передается кристаллу как целому. Энергия перехода может в принципе разделиться между испущенным 7-квантом, колебаниями кристаллической решетки, ядром, испустившим 7-квант, и кристаллом как целым. Две последние возможности следует сразу же исключить. Ведь для того, чтобы ядро могло, испытав отдачу, покинуть свое место в решетке, требуется энергия порядка по крайней мере 10 эВ, а энергия отдачи не превышает десятых долей электрон-вольта. Что же касается энергии отдачи кристалла как целого, то она, очевидно, ничтожно мала, так что ею можно заведомо пренебречь. Таким образом, энергия перехода распределяется в действительности лишь между энергией 7-кванта и энергией фононов. При этом существует вероятность того, что в некоторых случаях переход будет происходить без рождения фононов, т. е. без изменения колебательного состояния решетки. Именно такие переходы обусловливают появление мёссбауэровской спектральной линии.  [c.209]

Описание структурной модели. Результаты представленных в 2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерме-таллидов, образования пересыщенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано выше, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следующим образом.  [c.99]

Зависимость сопротивления деформированию и разрушению от числа искажений в кристаллической решетке. Атомная решетка реального кристаллического тела имеет разнообразные искажения (дефекты), оказывающие влияние на его прочность. К таким дефектам кристаллического строения металлов и сплавов относятся вакансии, атомы примесей, дислокации, границы зерен и блоков мозаики и микродефекты структуры. Решающая роль в процессах пластической деформацтг тг разрушештя--ттртгадлежит ди юка- -циям.  [c.9]

В современном металловедении применяются методы исследования сплавов с помош ью радиоактивных изотопов ( меченых атомов), ультразвука, осциллографии, микрокиносъемки структурных изменений, происходяш их в сплаве при его тепловой и механической обработках, и т. д. Успехи металлофизики позволили связать важнейшие свойства металлов и сплавов с их атомно-кристаллическим строением. Именно атомно-кристаллическое строение в первую очередь определяет тепло- и электропроводность металлов, их пластичиость, твердость и многие другие свойства. В последнее время, воздействуя на кристаллическую решетку, исследователи научились влиять на свойства металлических сплавов в сторону их повышения.  [c.152]

В качестве основных параметров для характеристики атомно-кристаллической структуры металла поверхностного слоя рекомендуются размеры блоков, углы их разориенти-рования. Оценку искаженносги кристаллической решетки металла поверхностного слоя  [c.100]

Все, без исключения, металлы в твердом состоянии Kpn TajMHHHbi. Для описания атомно-кристаллической структуры металлов используется понятие пространственной или кристаллической решетки, которая характеризует порядок размещения атомов или ионов многократно повторяющихся в решетке кристаллов в трех измерениях. Размеры элементарной кристаллической ячейки соизмеримы с размерами атомов и исчисляются в ангстре.мах. Кристаллическая решетка представляет собой пространственную периодическую сетку, в узлах которой располагаются атомы или ионы, образующие металл. Следует иметь в виду, что кристаллическое строение имеют не только металлы, но и другие вещества как неорганического, так и органического происхождения,  [c.21]

В начале 30-х годов Хзгг на основе геометрического подхода установил, что характер структуры того или иного карбида, нитрида и борида металла переходной группы в большинстве случаев определяется соотношением атомных радиусов металла (гм) и неметалла (г ). Если Гх/ M < 0.59(гм/ x > 1.7), то образуется структура, очень похожая на основную кристаллическую решетку соответствующего металла, но с неметаллическими атомами, расположенными в ее промежутках (так называемые нормальные фазы внедрения) если > 0,59, то возникает хотя и металлическая фаза, но с более сложной кристаллической решеткой. Основные кристаллические решетки таких фаз внедрения практически наиболее часто представлены структурами, характерными для настоящих металлов, т.е. гранецент-рированной кубической и компактной гексагональной, и лишь иногда простой гексагональной или объемноцентрированной кубической решеткой.  [c.162]


Диаграмма состояния Pm-Pr экспериментально не построена. Однако Pm и Рг в Периодической системе элементов расположены рядом. В металлическом состоянии металлы имеют идентичное электронное строение с тремя внешними коллективизированными электронами 5йРбД одинаковые кристаллические структуры с близкими постоянными решетки, атомные радиусы, отличающиеся всего лишь на 0,9 %.  [c.5]

Точечные дефекты, или несовершенства, размер которых мал во всех трех измерениях. К ним относятся вакансии (фиг. 8, а) — свободные узлы в атомно-кристаллической решетке — и промежуточные атом ы, смещенные в межуз-лия, или смещения (фиг. 8, а), а также атомы примесей, которые могут или замещать атомы металла в решетке, или быть внедренными в ее межузлия. Вакансии, промежуточные атомы и атомы примесей искажают атомно-кристаллическую решетку основного металла. При повышении температуры и увеличении амплитуды колебаний атомов в кристаллической решетке имеется вероятность выхода некоторых атомов из узлов решетки с образованием  [c.20]

Краевую дислокацию в кристалле можно представить и другим путем. Предположим, что верхняя часть кристалла, состоящего из кубов, отвечающих элементарным ячейкам его атомно-кристаллической решетки (фиг. 10, в), содержит на одну атомную плоскость rj больше, чем нижняя часть кристалла. Тогда такая полуплоскость (AB D) является лишней. Искаженная область у края этой лишней полуплоскости AD) называется краевой или линейной дислокацией, которая обозначена значком j. Кристаллическая решетка вокруг дислокации упруго искажена и является областью концентрации напряжения образование такой области требует значительной затраты энергии. Однако если дислокация уже образовалась, то перемещается она сравнительно легко. Наиболее искаженная часть решетки вблизи AD является центром или ядром дислокации, ее ширина простирается йсего на два — пять периодов решетки, т. е. межатомных расстояний. Линия AD называется осью дислокации, причем длина ее, т. е. длина дислокации, может доходить до многих десятков тысяч периодов решетки. Естественно, что представленное на фиг. 10, г расположение атомов в плоскости, перпендикулярной к оси дислокации AD, является приближенным. Точное распределение атомов вблизи центра или ядра дислокации неизвестно.  [c.25]

По мере выдержки образца в этой ванне при постоянной температуре ниже Ах происходит изотермическое превращение аустенита, вызывающее перестройку атомно-кристаллической решетки железа из плотносложенной в неплотносложенную и изменение длины образца, что регистрируется дилатометром. Полученная при этом дилатометрическая кривая характеризует кинетику изотермического превращения аустенита.  [c.178]

Большинство легирующих элементов, подобно а- и -железу, имеет атомно-кристаллические решетки объемноцентрированного или гранецентрированного куба. Титан и цирконий имеют гексагональную решетку, а кремний и углерод — решетку типа алмаза. Сходство кристаллических решеток способствует образованию ле-гируюш,ими элементами твердых растворов с железом. Элементы, имеющие объемноцентрированную кубическую решетку, растворяются преимущественно в а-железе, а имеющие гранецентрирован-ную кубическую — в у-железе.  [c.304]


Смотреть страницы где упоминается термин Решетка атомная кристаллическая : [c.369]    [c.14]    [c.152]    [c.166]    [c.171]    [c.374]    [c.87]    [c.18]    [c.53]    [c.25]    [c.31]    [c.39]    [c.307]    [c.8]    [c.21]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.226 , c.231 , c.233 , c.237 , c.242 , c.251 , c.258 , c.268 , c.292 , c.322 ]



ПОИСК



Атомно-кристаллическое строение металлов и сплаКристаллические решетки металлов

Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток

Атомные решетки

Атомный вес

Кристаллическая решетка

Кристаллические

Определение обратной решетки 96 Обратная решетка как решетка Брав 97 Решетка, обратная к обратной 97 Важные примеры 98 Объем элементарной ячейки обратной решетки 98 Первая зона Бриллюэна 99 Атомные плоскости Индексы Миллера атомных плоскостей Некоторые правила обозначения направлений Задачи Определение кристаллических структур с помощью дифракции рентгеновских лучей

Решетка атомная кристаллическая идеальная



© 2025 Mash-xxl.info Реклама на сайте