Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точечные группы (см. также Молекулы точечных групп)

Правила отбора, аналогичные (1,32), имеют место и для других точечных групп (см. также- гл. IV). Правило (1,31) всегда может быть удовлетворено для неплоских молекул, так как положительные и отрицательные уровни всегда встречаются парами (инверсионное удвоение, см. выше) ).  [c.43]

С[т1], вращательная постоянная колебательного уровня 48Э, 51У точечная группа, см. также 18, 23 Сзт, молекулы точечной группы С., орто- и пара-модификации 67, 498 полная симметрия вращательных уровней 6O, 491 правила отбора для вращений 469, 497 правила отбора для колебаний 274, 281, 374 - 380, 389 типы инфракрасных полос 499—512 типы кориолисовых возмущений 495  [c.631]


Прежде чем завершить рассмотрение точечной группы, обсудим еще так называемую вращательную подгруппу точечной группы , которая обычно используется для определения ядерных спиновых статистических весов уровней жестких нелинейных молекул. Вращательная подгруппа молекулярной точечной группы состоит только из операций вращения соответствующей точечной группы, например из операций , СгЛ группы sv (см. табл. 11.3) для молекулы воды. Такие операции не переставляют ядра, и поэтому формулы спиновой статистики неприменимы к результату этих операций. Однако то, что называется вращательной подгруппой точечной группы , по существу, является подгруппой перестановок группы молекулярной симметрии. Применение этой группы, а также группы молекулярной симметрий для определения статистических весов уровней рассмотрено в гл. 10 ).  [c.307]

Можно также сказать, что для точечной группы С- , (и для точечной группы см. Ниже) тин симметрии Е соответствует типу II, однако мы не найдем аналогов типам симметрии Д, Ф,... Аналогично, для точечной группы п Св типы симметрии Е-1 и соответствуют типам симметрии И и Д линейных или двухатомных молекул.  [c.127]

Точечные группы и О. Точечная группа кубической симметрии (к которой принадлежат молекулы, подобные СН4) имеет четыре оси симметрии третьего порядка. Невырожденные колебания или собственные функции могут быть по отношению к этим осям только симметричными (см. стр. 96), но могут являться симметричными или антисимметричными по отношению к шести плоскостям симметрии проходящим через оси симметрии Сд, и, следовательно, также по отношению к трем зеркально поворотным осям четвертого порядка 4. Таким образом, мы имеем два тта симметрии (Л1 и А< ) невырожденных колебаний или собственных функций. Более строгий анализ с помощью теории групп (см. Вигнер [923]) показывает, что в данном случае имеется именно один дважды вырожденный тип симметрии Ё, как и д,1я точечной группы и два трижды вырожденных типа симметрии и Их характеры даны без дальнейшего доказательства в табл. 28.  [c.137]

В соответствии с изложенным в конце раздела Зв, любая собственная функция многоатомной молекулы (безразлично, электронная, колебательная, вращательная или полная) должна принадлежать к одному из типов симметрии той или другой точечной группы, рассмотренных выше. Следовательно, колебательные собственные функции тех состояний, в которых возбуждены один или несколько квантов для нормальных колебаний различного типа симметрии, также должны принадлежать к одному из возможных типов симметрии. Это утверждение справедливо независимо от того, можно ли рассматривать колебания как строго гармонические или нет (см. также раздел 5). Поэтому возникает вопрос, к какому результирующему типу симметрии относится состояние, в котором возбуждается несколько нормальных колебаний или же возбуждается несколько квантов для одного или нескольких колебаний  [c.139]


Dsh, молекулы точечной группы Dsh (см. также XY3 плоские молекулы) внутренний колебательный момент количества движения 525 нормальные колебания 97, 104 полная симметрия вращательных уровней 436  [c.632]

В случае молекул точечной группы 1)зн, а также аналогичных молекул с плоскостью симметрии, перпендикулярной оси третьего или более высокого порядка, в отдельных ветвях подполосы (+/), К = 1 происходит чередование интенсивности, так как уровни Л) и Л 2 имеют различные статистические-веса в зависимости от величины ядерного спина одинаковых ядер. Однако-в каждой из двух ветвей, на которые расщепляется данная ветвь из-за удвоения -типа, чередование интенсивности происходит противоположным образом. Поэтому чередование интенсивности не будет наблюдаться до тех пор, пока не будут разрешены компоненты атого удвоения. Если в ветвях такой пары отсутствуют чередующиеся линии, то в результате будет наблюдаться одна ветвь с одиночными линиями, но с колебанием вращательной структуры аналогично тому, как это происходит в полосах П — П симметричных линейных молекул с нулевым ядерным спином одинаковых ядер. Амплитуда изменения интенсивности при чередовании зависит от числа одинаковых ядер и их спина точно так же, как в подполосах с К = О переходов А — А (см. выше).  [c.239]

Точечные группы. и Z).,,, — Если молекула обладает осью симметрии порядка р Ср или S , где р четное, то колебание или собственная функция может быть также антисимметричной по отношению к этой оси (см. стр. 96). Поэтому получается в два раза больше невырожденных типов симметрии, чем при нечетных р. Для точечной группы Ср , р плоскостей нужно разделить на два класса, р/2 плоскостей, обозначаемых символом о , и остальные р/2 плоскостей, обозначаемых символом (последние плоскости по отношению к первым являются диагональными плоскостями), гак как эти две совокупности плоскостей отличаются различными свойствами преобразования (имеют различные характеры). Сразу же видно (ср., например, фиг. , ж и 1,к), что отражение молекулы в плоскости можно заменить отражением в плоскости с последующим поворотом на угол 2тг/р вокруг оси Ср. Только ось симметрии Ср и р 2 плоскостей являются независимыми элементами симметрии, и четыре невырожденных типа симметрии соответствуют четырем комбинациям - -f-, -j---, ----------, отличаясь различным поведением по отношению к двум операциям Ср и Поведение по отношению к отражению в плоскости о , которое не всегда совпадает с поведением по отношению к отражению в плоскости о , получается, перемножением характеров для операций Ср и о .  [c.127]

Аналогичный результат справедлив для всех колебаний (вырожденных и невырожденных), являющихся антисимметричными по отношению к центру симметрии, например, для всех инфракрасных активных колебаний плоской молекулы типа Х,У4, линейной молекулы типа и др., что сразу же следует из правила о четных и нечетных состояниях (состояниях g и и, см. стр. 140), применяемого в сочетании с табл. 55. Этот результат справедлив также для невырожденных инфракрасных активных колебаний некоторых точечных групп, имеющих центр симметрии, именно таких, для которых полносимметричные колебания неактивны в инфракрасном спектре, как, например, для колебания . (а /) плоской молекулы типа ХУз (см. фиг. 63). Следует, однако, подчеркнуть, что обратное чередование не имеет места для серии обертонов, соответствующих основным колебаниям, активным в комбинационном спектре. Например, в случае молекул, имеющих центр симметрии, все обертоны актив-,ных комбинационных основных частот активны в комбинационном спектре и неактивны в инфракрасном спектре.  [c.285]

Исследование вращательных комбинационных и инфракрасных спектров аммиака (см. г.ч. I) показало, что молекула NH,, является симметричным волчком, обладающим постоянным электрическим дипольным моментом. Наиболее простое объяснение этого экспериментального факта состоит в предположении, что молекула аммиака образует пирамиду с атомом азота в вершине. Однако возможны и другие предположения. Хотя результаты исследования вращательного инфракрасного спектра совершенно исключают возможность плоской симметричной структуры (точечная группа D,/,, см. фиг. 1, S), так как такая структура не обладает дипольным моментом, но они не исключают несимметричную структуру, при которой молекула имеет два равных или почти равных момента инерции (например, плоскую несимметричную модель с симметрией или пирамидальную несимметричную модель с симметрией С ). Однако в этом случае молекула должна была бы иметь шесть основных частот, в то время как при предположении о симметричной пирамидальной структуре (точечная группа Сз,,) получаются только четыре частоты две полностью симметричные Ai и две дважды вырожденные Е (см. табл. 36). На основе последнего предположения может быть дано удовлетворительное истолкование большого числа полос в обычной и фотографической областях инфракрасного спектра, а также линий комбинационного спектра. Не имеется никаких данных о  [c.318]


Правила отбора. Аналогично случаю двухатомных молекул, можно считать с хорошей степенью приближения, что правила отбора для чисто колебательного спектра и для чисто вращательного спектра остаются неизменными и при взаимодействии колебания и вращения (доказательство см. в разделе 26). Таким образом, также и для вращательно-колебательного спектра в инфракрасной области происходят только те колебательные переходы (см. табл. 55), для которых составляющая собственного момента относится к типу симметрии 1 или составляющие и Му относятся к типу симметрии П (где значок и для точечной группы Соо следует опустить), т. е. только те колебательные переходы, для которых  [c.408]

Плоские и неплоские молекулы ХН3. На фиг. 127, а показана диаграмма корреляции орбиталей плоской молекулы ХН3 (точечная группа Х>зд). Диаграмма подобна приведенной на фиг. 120 для линейной молекулы XHg она устанавливает корреляцию орбиталей при малых и больших расстояниях между атомами X и Н. Как было установлено выше (см. 2,а и табл. 61), 15-орбита.11и трех атомов Н образуют молекулярные орбитали типа а и е. Существует сильное взаимодействие ) ( отталкивание ) орбиталей ie и 2е а также, хотя и в меньшей степени, орбиталей 2а и За[.  [c.326]

До сих пор мы рассматривали поведение нормальных колебаний и колебательных собственных функций только по отношению к отдельным операциям симметрии. Однако, в силу того что различные точечные группы характеризуются только известными комбинациями элементов симметрии (см. стр. 15) и что одни из этих элементов симметрии являются необходимым следствием других, возможны только определенные комбинации свойств симметрии нормальных колебаний и колебательных (и электронных) собственных функций, что было впервые показано Брестером [178]. Мы будем называть такие комбинации свойств симметрии типами симметрии (см. Мелликен [643]). В теории групп они соответствуют так называемым неприводимым представлениям, некоторые авторы предпочитают применять этот последний термин. Типы симметрии для всех молекул, за исключением молекул, принадлежащих к кубической точечной группе (см. также Плачек [700]) можно весьма легко определить на основании предыдущего, не прибегая явно к помощи теории  [c.118]

Нелинейные трехатомные молекулы, выражение для колебательных уровней энергии 90, 223 Ненастоящие нормальные колебания (см. также отдельные точечные группы) 82, 85, 90, 119, 159, 251 вырожденные 103, 105, 109, 126, 138 число 150, 152 Неплоские молекулы, инверсионное удвоение (левая и правая формы) 38, 43, 63, 239, 277, 434 Неполносимметричные комбинационные полосы  [c.617]

Каждая равновесная конфиг фацпя молекулы л[0-жет быть отнесена по своей симметрии к определенной точечной группе, т. е. к такой группе симметрии, все операции к-рой — повороты и отражения, переводящие равновесную конфигурацию саму в себя, — оставляют одну точку неподвижной в пространстве принадлежность к той или ипой группе соответствует наличию у молекулы тех или иных элементов симметрии — осей, плоскостей и центра спмметрии. При этом обычно, когда говорят о равновесной конфигурации молекулы, подразумевают ео равновесную конфигурацию в основном электронном состоянии. Точечные группы, к к-рым могут относиться равновесные конфигурации молекул, ириведены в табл. это — все 32 кристаллографич. точечные группы (см. Классы кристаллов), а также группы с осями симметрии порядка п= 5, 7, 8,... и и = оо и нкосаэдрич. группы. Отличный от нуля постоянный дипольный момент имеют только молекулы симметрии и эти же молекулы обладают чисто вращательными спектрами. Линейные молекулы относятся к группам и  [c.292]

ОСЬ Сз и через каждую из осей С , а также одну плоскость перпендикулярную к оси Сз, но не имеет центра симметрии. Примерами являются все плоские и симметричные молекулы типа ХУд (см. фиг. 1, подобные молекуле ВР, (см. стр. 322). Другим примером является зеркальная (цис-) форма молекулы (фиг. 2, и), 1, 3, 5-трихлорбензол, С8Н3С13 (фиг. 2,р) и подобные им молекулы. Точечная группа (имеющая одну ось С , четыре оси С,, плоскость Од и четыре плоскости о, ,) опять обладает центром симметрии и вследствие этого зеркально поворотной осью четвертого порядка. Любая плоская симметричная молекула типа могла бы служить иллюстрацией этой точечной группы (см. фиг. 1,ж). Примером группы могла бы явиться молекула  [c.20]

Точечная группа Т . Если молекула, кроме трех взаимно перпендикулярных осей симметрии второго порядка и четырех осей третьего порядка (точечная группа Т), имеет плоскость симметрии <з , проходящую через каждую пару осей третьего порядка (т. е. две взаимно перпендикулярные плоскости, проходящие через каждую ось второго порядка), всего шесть плоскостей симметрии , то она принадлежит к точечной группе Т . Наличие этих плоскостей предполагает, что оси второго порядка одновременно являются зеркально поворотными осями четвертого порядка. Так как правильный тетраэдр обладает этой симметрией, то все тетраэдрические молекулы относятся к этой точечной группе СН4 (см. фиг. 3, ), СС14, и др. Молекула тетрамэтилметана С(СНз)4 также может служить примером этой группы.  [c.20]

Точечная группа О,. Если молекула имеет, кроме трех взаимно перпендикулярных осей симметрии четвертого порядка и четырех осей третьего порядка (точечная группа О), центр симметрии /, то она принадлежит к точечной группе Од. Следствием этого является наличие шести осей второго порядка (кроме трех осей второго порядка, которые совпадают с осями четвертого порядка) и девяти плоскостей симметрии. Оси симметрии четвертого порядка являются также одновременно зеркально поворотными осями четвертого порядка. Читатель может легко убедиться из фиг. 3, г и 3, в том, что правильный октаэдр и куб обладают такой симметрией. Очень вероятным примэром точечной группы Од является конфигурация молекулы ЗЕв при условии, что атомы Е размещены по вершинам правильного октаэдра, а атом 8 находится в центре (см. стр. 461). Другим примером могла бы служить молекула 8 , ес.1Ш бы атомы размещались по вершинам куба, что, повидимому, нэ имеет места.  [c.22]


D,h, точечная группа (типы симметрии и характеры) 19, 23, 32, 14 , 47, 538 Dihr молекулы точечной группы D h-правила отбора 274, 277, 472 нормальные колебания 05— 06 число колебаний каждого типа симметрии 57 />вА> точечная группа (типы симметрии и характеры) 19, 23, 30, 41, 47 Dth, молекулы точечной группы D h-правила отбора 274, 39 , 472 нормальные колебания 105, 133 число колебаний каждого типа симметрии 157, 391 Deh, точечная группа 20, 23, 434, 538 типы симметрии и характеры 132, 142, 147, 391 распадение на типы симметрии других точечных групп 255, 391 Dooh, молекулы точечной группы Dooh (см. также линейные молекулы) внутренняя статистическая сумма 540 правила отбора 31—32, 274, 408  [c.632]

Г , молекулы точечной группы 7 (см. также Сферические во.1ЧКи) 51, 478 Та, точечная группа 20—22, 23, 51, 434, 447, 538 распадение типов симметрии на тппы симметрии точечных групп С,,и> 255  [c.639]

V, молекулы точечной группы V полная симметрия вращательных уровней 491, 493 правила отбора в колебательных спектрах 274 правила отбора для вращательных спектров 469, 498, 199 типы инфракрасных полос 499 числа колебаний каждого типа симметрии 153 ( >а), точечная группа 17, 23, 538 отношение к типам симметрии групп У,1, С 255 типы симметрии и характеры 120, 129, 141 У , высота потенциального барьера для внутреннего вращенпя крутильных колебаний (см. также Потенциальный барьер) 241, 526, 527 У/1, молекулы точечной группы правила отбора 274  [c.639]

В табл. 1 представлены элементы симметрии всех важнейших точечных групп и в каждом случае приведеп , ириме])ы молеку,п или радикалов, принадлежащих к этим точечным группам. Оиущеи], точечные группы, которые, по-видимому, не встречаются в многоатоми , молекулах. Иллюстрации некоторых из точечных групп ириведеит,[ в томе 11 (123], фиг. 1, 2 и 3 см. также работу Коттона КЧ)-  [c.11]

И — гинототический элемент симметрии для расширенных точечных групп межъядерное расстояние вращательное квантовое число в молекулах типа сферического волчка / 5, Ле — постоянные центробежного растяжения (см. также D2 и D3)  [c.761]

Для нелинейных многоатомных молекул классификация электронных состояний по типам симметрии может быть произведена в соответствии с принадлежностью равновесной конфигурации молекулы к сшре-деленной точечной группе конечного потядка (см. табл.) и аналогична классификации колебат. состоя-ний по типам симметрии (см. Нормальные колебания молекул) при этом необходимо, однако, учитывать, что, согласно Яна — Теллера теореме, вырожденные электронные состояния нелинейных молекул неустойчивы, о чем упоминалось выше. Правила отбора для переходов между электронными состояниями также аналогичны правилам перехода между колебат. состояниями. В соответствии с типами симметрии состояний отдельных электронов можно рассматривать для нелинейной молекулы электронные оболочки и их заполнение и характеризовать электронное состояние молекулы заданием электронной конфигурации. Для невырожденных состояний отдельных элект1)онов получаются оболочки, заполняемые 2 электронами, для дважды вырожденных — 4 электронами и для трижды вырожденных — 6 электронами.  [c.296]

Точечные группы. В общем случае молекула обладает несколькими из перечисленных выше элементов симметрии (см. примеры фиг. 1). Комбинируя все большее и большее число элементов симметрии, мы получаем системы, обладающие все большей и большей степенью симметрии. Однако возможны не любые комбинации элементов симметрии, а лишь вполне определенные. Например, молекула не может иметь в одном и том же направлении ось симметрии третьего и ось симметрии четвертого порядка. С другой стороны, существование известных элементов симметрии часто обусловливает существование некоторых других если молекула имеет две взаимно перпендикулярные плоскости симметрии (ХУ , фиг. 1,а), то линия их пересечения обязательно является осью симметрии второго порядка. Если молекула имеет ось симметрии второго порядка (С ) и плоскость симметрии, перпендикулярную к этой оси, она обязательно должна также обладать центром симметрии (см. молекулы типа ХзУз25 на фиг. 1,г). В самом деле, поворот на 180°, например, вокруг оси г (Сз) превращает д в — д и в —у, а последующее отражение меняет знак г, следовательно, в результате х, у л г превращаются в—х,—у, — г, т. е. имеет место инверсия.  [c.15]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]

Точечная группа О . Кроме элементов симметрии точечной группы О точечная группа О имеет еще центр симметрии i, а также несколько других элементов симметрии, обусловленных им. Поэтому каждому типу симметрии точечной группы О соответствует два типа симметрии в точечной группе О один из них — симметричный по отношению к центру симметрии I, другой — антисимметричный. Таким образом, мы получаем типы симметрии и характеры, пргиведенные в табл. 29 ). В качестве примера на фиг. 51 показаны нормальные колебания октаэдрической молекулы типа XYg (подобной молекуле SFg, см. стр. 361). В данном случае не возникают нормальные колебания типов симметрии Aia, A g, Лз , Pig (см. табл. 36).  [c.138]

Так как едва ли будут найдены реальные молекулы, принадлежащие к точечным группам 7д, / и /, то мы не будем рассматривать соответствующие типы симметрии и характеры (см. Тисса [867]). Однако, пожалуй, следует упомянуть, что точечные группы / и /д, кроме трижды вырожденных типов симметрии, имеют также четырехкратно и пятикратно вырожденные типы симметрии.  [c.139]


Мы уже подчеркивали, что тип симметрии колебательных уровней одинаков как для гармонических, так и для ангармонических колебаний так, например состояние, соответствующее возбуждению дважды вырожденного колебания с г)=1, остается дважды вырожденным даже в том случае, если потенциальная функция является ангармонической. В случае гармонического осциллятора степень вырождения состояния, возникающего при возбуждении нескольких квантов одного вырожденного колебания, а также состояния, возникающего при возбуждении нескольких вырожденных колебаний, более высока, чем степень вырождения любой составляющей колебания с другой стороны, если принять во внимание ангармоничность, то столь высокое вырождение, как правило, не сохраняется, а вместо этого наблюдается расщепление уровней как раз на те подуровни, которые были получены раньше с помощью теории групп (табл. 32 и 33). Причины этого явления подробно разобраны в работе Тисса [867], показавшего, что случайное вырождение, появляющееся в некотором приближении, всегда снимается в более высоком приближении и остается, только истинное вырождение, определяемое точечной группой молекулы. Это совершенно справедливо лишь до тех пор, пока мы не учитываем вращемия молекулы (о взаимодействии с вращением см. гл. IV).  [c.229]

В случае нелинейной молекулы типа ХУ, (точечная группа полносимметричные основные колебания VI и а также антисимметричное колебание Уд активны как в инфракрасном, так и в комбинационном спектре. Аналогичное справедливо для всех обэртонов (см.  [c.285]

Теория валентностей и результаты исследования диффракции электронов (Берш [158]> свидетельствуют в пользу второго предположения, но не достаточно определенно, так что вопрос все еще остается открытым. В обоих случаях можно ожидать свободного вращения групп СНз вокруг осей N—С. Линейная модель имеет ту же симметрию, как и молекула СНз—С=С—СНз, т. е. те же типы симметрии и то же самое число основных частот различных типов симметрии. Вторая модель при произвольном положении групп СНз не имеет элементов симметрии. Однако для некоторых частных положений групп СНз имеется или центр симметрии (С,), или плоскость симметрии (С ), или и то и другое ( aft). К последнему типу принадлежит также группа С—N=N—С. Если потенциальная энергия не зависит от угла вращения групп СНз, то нормальные колебания распределяются по типам симметрии точно так же, как в случае точечной группы Сгл. Имеется однозначное соответствие типов симметрии группы С з с типами симметрии группы Dsd> а, следовательно, также и группы Да. Эта связь имеет следующий вид (см. табл. 53).  [c.386]


Смотреть страницы где упоминается термин Точечные группы (см. также Молекулы точечных групп) : [c.749]    [c.616]    [c.625]    [c.516]    [c.18]    [c.331]    [c.441]    [c.615]    [c.91]    [c.529]    [c.511]    [c.378]    [c.19]    [c.354]    [c.359]    [c.431]    [c.491]    [c.115]    [c.339]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.0 ]



ПОИСК



Xs, молекулы точечной группы

Точечные группы (см. также Молекулы

Точечные группы (см. также Молекулы

Точечные группы (см. также Молекулы геометрические

Точечные группы (см. также Молекулы нежестких молекул

Точечные группы (см. также Молекулы правила отбора для разрешенных

Точечные группы (см. также Молекулы расширенные

Точечные группы (см. также Молекулы электронных переходов

Точечные группы (см. также Молекулы эффективные, при большом инверсионном удвоении

Точечные группы СТ, С, С3 и С. Точечные группы t), Сд



© 2025 Mash-xxl.info Реклама на сайте