Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращательные спектры, инфракрасные

Колебательно-Вращательные спектры (инфракрасные и комбинационного рассеяния) двухатомных молекул. Определение частот колебаний и межъядерных расстояний. Колебательные спектры многоатомных молекул в конденсированной фазе. Критерий проявления различных форм колебаний (активность колебаний) в PIK- и КР-спектрах на примере молекул СО2 и Н2О. Зависимость интенсивности линий в ИК- и КР-спектрах от температуры. Инфракрасная спектроскопия и структурно-групповой (функциональный) анализ.  [c.267]


Инфракрасный вращательный спектр. Инфракрасный вращательный спектр, как и в ранее рассмотренных случаях, может возникнуть только если молекула обладает собственным дипольным моментом. Поэтому молекулы с симметрией Кл (такие, как С Н , N20,4) не дают инфракрасного вращательного спектра подобный спектр имеют только молекулы с симметрией С. , такие как Н.2О, Н СО, Н Оа, или молекулы с еще более низкой симметрией. В случае наличия собственного дипольного момента мы имеем, как и всегда для дипольного излучения, правило отбора для числа У.  [c.69]

Важную роль в процессе теплообмена в топках играют углекислый газ СОа и водяной пар HjO, образующиеся при сжигании твердого топлива, мазута и газа. При температурах, характерных для топочных камер котлоагрегатов, эти трехатомные газы излучают и поглощают энергию в отдельных колебательно-вращательных полосах инфракрасной области спектра, образованных множеством взаимно перекрывающихся линий. Интегральная сила полос может быть рассчитана по формуле  [c.17]

Используя молекулярные постоянные (см. Приложение V), рассчитайте положение первых трех вращательных линий Р- и -ветвей в инфракрасном колебательно-вращательном спектре поглощения молекулы N0 (в состоянии ХЩц ,) для перехода 1—0.  [c.228]

Качественный анализ по спектрам поглощения более широко используется в инфракрасной области, где лежат колебательно-вращательные спектры поглощения, которые состоят из сравнительно узких полос. Структура колебательных спектров более устойчива, а главное, характерна и поэтому удобна для целей качественного молекулярного анализа.  [c.633]

Рис. 8. Вращательный спектр парой Н,0, полученный на вакуумном спектрометре в далекой инфракрасной об.пасти. Рис. 8. <a href="/info/22670">Вращательный спектр</a> парой Н,0, полученный на вакуумном спектрометре в далекой инфракрасной об.пасти.
Инфракрасные вращательные спектры. Переход с одного вращательного уровня на другой при дипольном излучении (происходящий без изменения электронной или колебательной энергии — случай чисто вращательного спектра  [c.31]

Вплоть до настоящего времени еще не наблюдались инфракрасные вращательные спектры линейных молекул, так как все эти спектры лежат в очень далекой инфракрасной области. Например, для молекулы H N, обладающей из  [c.32]


Предсказанные значения частот и длин волн инфракрасного вращательного спектра молекулы. H N  [c.32]

Инфракрасный спектр. Как всегда, чисто вращательный спектр может возникнуть лишь в том случае, если молекула обладает собственным дипольным моментом. В молекулах, обладающих осью симметрии, собственный дипольный момент обязательно ориентирован по этой оси. Поэтому если молекула имеет две или несколько (несовпадающих друг с другом) осей симметрии, то ее собственный дипольный момент должен равняться нулю. Это справедливо для всех молекул, являющихся сферическими волчками вследствие своей симметрии, т. е. для молекул, относящихся к любой кубической точечной группе, например, для молекул СН,,, и др, Следовательно, такие молекулы не обладают вращательным инфракрасным спектром. Только в том случае, когда молекула случайно является сферическим волчком, сна может иметь собственный дипольный момент, отличный от нуля, и, следовательно, давать инфракрасный вращательный спектр. Тогда для квантового числа / справедливо простое правило отбора с О, 1, причем достаточно рассматривать аере-  [c.54]

Закись азота, N20. Число электронов молекулы N 0 и молекулы СОа одинаково, II поэтому можно было бы также ожидать, что она имеет линейную симметричную структуру. Однако исследование колебательного и колебательно-вращательного спектров однозначно показывает, что молекула К О, хотя и линейна, но не симметрична. Форма молекулы N — N — О. Три наиболее интенсивные инфракрасные полосы имеют частоты  [c.301]

Правила отбора. Аналогично случаю двухатомных молекул, можно считать с хорошей степенью приближения, что правила отбора для чисто колебательного спектра и для чисто вращательного спектра остаются неизменными и при взаимодействии колебания и вращения (доказательство см. в разделе 26). Таким образом, также и для вращательно-колебательного спектра в инфракрасной области происходят только те колебательные переходы (см. табл. 55), для которых составляющая собственного момента относится к типу симметрии 1 или составляющие и Му относятся к типу симметрии П (где значок и для точечной группы Соо следует опустить), т. е. только те колебательные переходы, для которых  [c.408]

Вращательные уровни энергии — это уровни, связанные с вращательным движением молекулы как целого. Вращение молекул приближенно рассматривают как свободное вращение твердого тела с тремя моментами инерции вокруг трех взаимно перпендикулярных осей. При этом возможны три случая 1) сферический волчок (все три момента инерции одинаковы) 2) симметричный волчок (два момента инерции одинаковы, третий отличен от них) 3) асимметричный волчок (все три момента инерции различны). Разности энергий соседних вращательных уровней составляют от сотых долей электрон-вольта для самых легких молекул до стотысячных долей электрон-вольта для наиболее тяжелых молекул. Вращательные переходы непосредственно изучаются методами инфракрасной спектроскопии и комбинационного рассеяния света, а также методами радиоспектроскопии. Колебательно-вращательные спектры получаются в ре-дультате того, что изменение колебательной энергии сопровождается одновременными изменениями вращательной энергии. Такие изменения происходят и при электронно-колебательных переходах, что и обусловливает вращательную структуру электронно-колебательных спектров.  [c.228]

Какие молекулярные постоянные можно рассчитать по чисто вращательным спектрам, проявляющимся в. микрозолновой и далекой инфракрасной области спектра  [c.118]

Интерферограммы вращательного спектра молекул. Известно, что вращательные спектры молекул состоят из почти эквидистантных линий, лежащих, как правило, в дальней инфракрасной области спектра. Для анализа этих спектров с успехом применяются фурье-спектрометры, В качестве приближения к вращательному спектру возьмем в пространстве частот дираковскую гребенку (рис, 81, а)  [c.96]


МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения и испускания, а также комбинационного рассеяния света, возникающие при квантовых переходах молекул с одних уровней энергии на другие. М. с. наб.людаются в виде совокупности более или менее широких полос, распадающихся при достаточной дисперсии спектрального прибора на совокупность тссно расположенных линий. Сложность полосатых М. с. по сравнению с линейчатыми атомными спектрами опроделяется тем, что движение в молекулах болое сложно, чем в атомах наряду с движением электронов относительно ядер составляющих молекулу атомов, происходит колебательное движение самих ядер около положений равновесия и вращательное дпижение молекулы как целого. Переходы можду уровнями энергии, связанными с этими видами движения, дают в видимой и ультрафиолетовой областях полосатые электронные спектры, в близкой инфракрасной области — полосатые колебательные спектры, в далекой инфракрасной и микроволновой областях — линейчатые вращательные спектры. Конкретная структура М. с, различна для различных молекул и, вообще говоря, усложняется с увеличением числа атомов в молекуле. Для весьма сложных молекул, однако, в ультрафиолетовой и в видимой областях вместо дискретных спектров наблюдаются лишь широкие сплошные полосы поглощения и испускания, спектры упрощаются и выявляется их сходство для различных молекул.  [c.289]

Изучение чисто вращательных спектров молекул в далекой инфракрасной и особенно в с ВЧ области позволяет по найденным значениям вращательных постоянных определять с большой точностью параметры равновесной конфигурации — значения длин связей и уг.пов можду СВЯЗЯД1И. Для увеличения числа определяемых параметров исследуют вращательные спектры изотопич. молекул, имеющих одинаковые параметры равновесной конфигурации, но различные моменты инерции и вращательные постоянные.  [c.294]

Одной из центральных проблем современной химии является изучение структуры многоатомных молекул. В колебательных и вращательных спектрах этих молекул чрезвычайно наглядно отрамсается их строение. Именно эти спектры позволяют детально исследовать реальную структуру молекул, определять действительный характер происходящего внутри молекул движения. Наиболее наглядно проявляется строение молекул в колебательных спектрах. Поэтому изучение колебательных спектров представляет один из лучших методов исследования строения молекул. Вместе с тем, специфичность частот колебаний для каждой данной молекулы, для каждого еэ изомера открывает широкие возможности молекулярного спектрального анализа по колебательным спектрам (по спектрам комбинационного рассеяния и по инфракрасным спектрам).  [c.5]

Отсутствие инфракрасного вращательного спектра (дипольного) у молекул с симметрие11[ не обладающих собственным дипольным моментом, нужно рассматривать как результат невозможности одновременного выполнения правил отбора -->— и симметричный уровень ч—антисимметричный уровень (см. фиг. 4).  [c.32]

Инфракрасный спектр. Как и в случае линейных молекул, инфракрасный вращательный спектр может появиться в дипольном излучении, лишь если молекула обладает собственным дипольным моментом. Когда, как о5ычно, ось симметричного волчка совпадает с осью симметрии, то собственный ди-польный момент обязательно ориентирован по этой оси. В этом случае получаются следующие правила отбора для чисел К и J (см. ниже)  [c.43]

Члены с коафициентом /Зуд- обусловливают очень малое расщепление каждой линии на составляющие, характеризующиеся различными К- Такую структуру, однако, еще не удалось разрешить. Усреднение членов с коэфициентами Ьуд- и Dj приводит к небольшому систематическому изменению расстояний между последовательными линиями, а такмсе к тому, что четные линии ветвей / уже не совпадают в точности с линиями 5. Последнее обстоятельство, хотя тоже не приводит к заметному расщеплению, но проявляется в том, что нечетные линии R не расположены точно посредине между соседними линиями S. Это видно нз табл. 6, которая также ясно показывает систематическое изменение расстояний между линиями. Учитывая поправочные члены, Льюис и Гаустон [576] получили из экспериментально наблюденных комбинационных частот, приведенных в табл. 6, для вращательной постоянной В значение 9,92 см", которое очень хорошо совпадает со значением 6=9,945 m S полученным из инфракрасного вращательного спектра (см. стр. 46). Такое количественное совпадение, а также качественная структура спектра (в частности, появлений лишь линий, для которых ДЛ =0) с несомненностью показывает, что молекула NHj является симметричным волчком, ось которого совпадает с осью симметрии (осью симметрии третьего порядка).  [c.49]

До настоящего времени Н2О и В О являются единственными молекулами из числа представляющих собой асимметричные волчки, для которых сколько-нибудь подробно исследовались инфракрасные вращательные спектры. Рендалл, Деннисон, Гинзбург и Вебер [712] и Фьюзон, Рендалл и Деннисон [343] измеряли эти спектры с большой степенью точности на приборах с очень высокой разрешающей способностью. На фиг. 21 изображена часть наблюденного спектра молекул Н.2О. С первого взгляда в спектре не видно закономерностей. При более тщательном рассмотрении, однако, можно найти несколько серий линий с закономерным изменением расстояний. Две такие серии  [c.71]

Вода, Н2О. Изучение интенсивного инфракрасного вращательного спектра, а также структура этого спектра (см. гл. I) вместе со структурой вращательно-колебательного спектра (см. гл. IV) однозначно приводят к выводу, что молекула HjO не линейна. Этот вывод находится в согласии и со структурой колебательного спектра. В комбинационном спектре водяных паров имеется одна интенсивная линия с частотой 3654,5 см (Джонстон и Уолкер [475], Ренк, Ларсен и Борднер [716], Бендер [135]). Она соответствует, очевидно, симметричному колебанию (фиг. 25, а), так как комбинационные линии для несимметричных колебаний должны быть слабыми. С другой стороны, частота 3654,5 весьма близка к частоте колебания радикала ОН (AGj = 3568,4) и поэтому не может принадлежать второму симметричному колебанию Vj, т. е. изменению угла между связями ОН. Наблюдались или не наблюдались другие комбинационные частоты водяных паров пока еще не ясно.  [c.304]


Формальдегид, Н СО и О СО. Обычно предполагается, что молекула формальдегида имеет плоскую симметричную форму типа У (точечная группа С , см. фиг. 24), хотя априори (если не учитывать теорию направленных валентностей) возможна и форма пирамиды только с одной плоскостью симметрии (точечная группа С ). Однако последнее предположение безусловно иск.тючается, так как во вращательной структуре инфракрасных и ультрафиолетовых полос наблюдается чередование интенсивностей (3 1) см. стр. 509 и [288]). Было бы трудно прийти к такому выводу на основе только одного колебательного спектра, так как для обеих моделей все шесть основных частот (см. фиг. 24) активны как в инфракрасном, так и в комбинационном спектрах (см. табл. 55). Хотя для обеих моделей должны получаться некоторые различия в правилах отбора для составных частот инфракрасного спектра и в поляризации основных комбинационных частот, но имеющиеся экспериментальные данные ) не позволяют прийти к сколько-нибудь надежному выводу. Из имеющихся данных о колебательном спектре существенное подтверждение плоской модели дает лишь применение правила произведений к наблюденным значениям основных частот молекул НзСО и В СО. Соответствуюп1ее соотношение хорошо выполняется лишь для плоской модели. В дaльнeйпJeм мы будем исходить именно из этой модели.  [c.324]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Правила отбора. Для вращательно-колебательного комбинационного спектра (так же как и для инфракрасного спектра) с очень хорошей степенью прибл 1жения справедливы те же колебательные и вращательные правила отбора, что и для чисто колебательного (см. табл. 55) и чисто вращательного спектров соответственно. В наиболее общем случае, т. е. в том случае, когда ось волчка не совпадает с осью симметрии,  [c.469]

Примеры, моменты инерции и расстояния между ядрами. Мекке и его сотрудники [612, 130, 333] были первыми, кому удалось дать полный анализ вращательно-колебательного спектра молекулы, являющейся асимметричным волчком, а именно молекулы Н.20. Этот пример и до сих пор остается единственным примером сильно асимметричного волчка, дли которого произведен действительно полный анализ спектра. Существенное преимущество в данном случае заключается в том, что благодаря сильному поглощению в атмосфере солнечного спектра парами воды удается получить очень полный спектр Н О с высокой дисперсией в области спектра, доступной для фотографирования. Было обнаружено, что все полосы в фотографической области спектра принадлежат к типу Л. В качестве примера в табл. 134 приведены значения частот и интерпретация линий полосы 8227А, которая была воспроизведена на фиг. 151, б. Читатель может использовать эти даниые и проверить, как выполняются приведенные выше комбинационные соотношения. Табл. 135 иллюстрирует как совпадение некоторых комбинационных разностей для нижнего состояния рассматриваемой полосы, так и их совпадение с соответствующими комбинационными разностями для других полос и с надлежащим образом выбранными разностями для чисто вращательного спектра в далекой инфракрасной области. Мы видим, что, за исключением одного случая 3 —2 , совпадение разностей, полученных для данной пары уровней из разных полос и из вращательного  [c.517]

Крутильные колебания симметричных молекул типа СоНб или С Н, неактивны в инфракрасном спектре. Очевидно, что это будет справедливо также и для свободного внутреннего вращения, т. е. для предельного случая полного отсутствия потенциального барьера, так как при таком движении не будет происходить никакого изменения дипольного. момента, Другими словами, не будет наблюдаться чисто вращательный спектр, соответствующий свободному внутреннему вращению. То же мы имели и этих молекул.  [c.527]


Смотреть страницы где упоминается термин Вращательные спектры, инфракрасные : [c.599]    [c.233]    [c.235]    [c.314]    [c.782]    [c.346]    [c.229]    [c.283]    [c.292]    [c.498]    [c.5]    [c.47]    [c.55]    [c.55]    [c.409]    [c.597]    [c.601]    [c.603]    [c.609]    [c.612]    [c.612]    [c.620]    [c.622]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



474 (глава IV, За) инфракрасный вращательно-колебательный спектр 481 (глава

489 (глава IV, 4а) возмущения инфракрасные вращательно-колебательные спектры 497, 514 (глава

489 (глава IV, 4а) возмущения инфракрасные вращательные спектры

CHN, синильная кислота инфракрасный вращательный спектр

NHS аммиак инфракрасный вращательный спектр

Вращательные спектры, инфракрасные асимметричных волчков

Вращательные спектры, инфракрасные комбинационные 25 (глава

Вращательные спектры, инфракрасные линейных молекул

Вращательные спектры, инфракрасные молекул со свободным внутренним вращением

Вращательные спектры, инфракрасные симметричных волчков

Вращательные спектры, инфракрасные сферических волчков

Заторможенное внутреннее вращение инфракрасный вращательно-колебательный спектр, 527 (глава

Инфракрасные вращательно-колебательные спектры (см. также Тонкая структура

Инфракрасные спектры

Классическое движение (векторная диаграмма). Уровни энергии. Свойства I симметрии и статистические веса. Термическое распределение вращательных уровней. Инфракрасный спектр. Вращательный комбинационный спектр Сферический волчок

Классическое движение. Уровни энергии. Влияние нежесткости. Свойства симметрии и статистические веса. Инфракрасный вращательный спектр. Комбинационный спектр КОЛЕБАНИЯ, КОЛЕБАТЕЛЬНЫЕ УРОВНИ ЭНЕРГИИ И КОЛЕБАТЕЛЬНЫЕ СОБСТВЕННЫЕ ФУНКЦИИ Нормальные колебании, классическая теория

Классическое движение. Уровни энергии. Статистические веса и свойства симметрии. Термическое распределение вращательных уровней. Инфракрасный спектр. Вращательный комбинационный спектр Асимметричный волчок

Линейные молекулы инфракрасный вращательно-колебательный спектр 408, 417 (глава

Невырожденные колебательные состоянии. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Возмущения Инфракрасный спектр

Невырожденные колебательные состояния. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Кориолисово расщепление вращательных уровней Инфракрасный спектр

По инфракрасная

Правила отбора в инфракрасном вращательном спектр

СН„ метан отсутствие вращательных комбинационных и инфракрасных спектров

Свободное внутреннее вращение инфракрасный вращательно-колебательный спектр молекул со свободным внутренним вращением 527 (глава

Симметричные волчки (молекулы) инфракрасный вращательный спектр

Спектры вращательные

Уровни энергии. Свойства симметрии. Статистические веса, влияние спина и статистика. Термическое распределение вращательных уровней. Инфракрасные вращательные спектры. Вращательные комбинационные спектры Симметричный волчок

Элементарное рассмотрение. Свойства симметрии вращательных уровней. Более подробная теория вращательных постоянных а,- кориолисово взаимодействие. Удвоение типа . Возмущения Инфракрасный спектр



© 2025 Mash-xxl.info Реклама на сайте