Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Зерна — Величина — Определение

Имеющиеся данные о влиянии титана на склонность стали к хрупкому разрушению весьма противоречивы. Добавки 0,10—0,25% титана [59] снижают величину ударной вязкости материала при понижении температуры. Дальнейшее увеличение титана до 0,4% существенно улучшает свойства стали. В качестве раскислителя титан оказывает положительное действие на свойства стали за счет измельчения зерен, изменения соотношения феррита и перлита и понижения склонности к перегреву. При получении мелкодисперсной структуры (зерна с 5-го до 10-го номера) при добавках титана 0,3—0,4% на каждый номер измельчения зерна критическая температура хрупкости, определенная Цр=2 кгс-м/см , понижается в среднем на 10°С [41].  [c.41]


Ряд методов определения качества структуры стандартизован метод определения величины зерна стали — ГОСТ 5639—65 метод определения неметаллических включений в стали — ГОСТ 1778—62 эталоны микроструктуры стали — ГОСТы 8233—56 и 5640—68 метод определения глубины обезуглероживания — ГОСТ 1763—68 методы определения микроструктуры твердых металлокерамических сплавов —  [c.7]

При исследовании и контроле сталей часто определяют величину не действительного, а наследственного зерна, г. е. величину зерна аустенита после нагрева при определенных условиях (температуре, времени выдержки и скорости охлаждения), указанных в соответствующих стандартах. Наследственное зерно характеризует чувствительность стали к росту зерна при нагреве для термической обработки и оказывает значительное влияние на многие свойства стали, в частности на ее сопротивление разрушению.  [c.43]

Вполне понятно, что хотя величина зерна и может иметь определенное влияние на склонность стали к межкристаллитной коррозии, его нельзя переоценивать и ставить выше влияния химического состава и других факторов. Поэтому приведенные формулы следует рассматривать как вспомогательное средство для более глубокого анализа явлений, связанных с межкристаллитной коррозией нержавеющих сталей. Решающим для оценки стойкости нержавеющих сталей к межкристаллитной коррозии все же остается правильно выбранное испытание на межкристаллитную коррозию (см. гл. 10).  [c.94]

Предлагаемым методом можно определить величину аустенитного зерна, образующегося при нагреве до любой температуры. При этом, например, можно исследовать влияние предварительной термической обработки на величину образующегося зерна. Так, на рис. 1 при одинаковом увеличении показано зерно, образовавшееся в предварительно гомогенизированной (б) и в исходной (бз) стали при одинаковом режиме нагрева шлифов в вакууме (880 С, 20 мин). В гомогенизированной стали зерно, определенное по сетке феррита, очень крупное (200—250 мкм). При нагреве до 880" С произошло измельчение зерна до 30—50 мкм, что соответствует величине зерна в исходной стали. При нагреве исходной стали до 880° С зерно уменьшилось до 15—25 мкм. Насколько эффективным является предлагаемый метод выявления аустенитного зерна, видно из рис, 3, на котором представлена микроструктура зака-252  [c.252]

Поковки одинакового химического состава могут иметь различные качественные показатели при соблюдении определенных условий выплавки, разливки и ковки стали, как, например, количество, величина и характер распределения неметаллических включений, прокаливаемость, склонность к образованию трещин при ковке, механические свойства, пораженность волосовинами, различная склонность к росту зерна и перегреву. По.этому плавки на ответственные поковки назначаются с учетом как химического состава стали, так и данных плавочного контроля, включая осмотр слитков и исследования материала пробных образцов по разработанной методике для стали каждой марки применительно к определенным видам изделий.  [c.299]


Действительное зерно характерно для стали после определенной термической обработки и определяется его фактическим размером. Величина действительного зерна зависит от способа выплавки стали, методов термической и механической обработки и главным образом от температуры последнего нагрева.  [c.91]

Жаропрочность сталей и сплавов, характеризуемая и о , зависит от природы и свойств твердого раствора основы температур плавления, рекристаллизации и атомных связей, соответствующих определенному типу кристаллической решетки основы легирующих элементов термической обработки величины зерна и характера обработки поверхности деталей.  [c.201]

ГОСТ 5639. Стали и сплавы. Методы выявления и определения величины зерна.  [c.267]

Предел текучести — это фактически напряжение, которое необходимо приложить, чтобы скорость пластической деформации стала соизмеримой со скоростью машинного деформирования и могла быть достигнута некоторая определенная величина макродеформации (например, для предела текучести — 0,2 %). Другими словами, внешнее напряжение должно быть поднято до уровня, который обеспечивает при заданных условиях деформации (температура и скорость испытания) необходимые плотность дислокаций и скорость их движения в материале с конкретной структурой. Причем скорость дислокаций, вернее, их средняя скорость, является основным параметром, поскольку плотность дислокаций не может изменяться произвольно, так как она ограничена деформационным упрочнением. Поскольку усреднение скорости дислокаций проводится на достаточно больших отрезках, то оно учитывает преодоление множества различных препятствий, размеры которых колеблются от долей межатомных расстояний до размера зерна. Более того, можно сказать, что эти препятствия фактически запрограммированы при выборе состава сплава, его термической и термомеханической обработок.  [c.87]

В СССР разработан и широко применяется способ контроля величины зерна по затуханию УЗ-волн, измеренному относительным методом [80]. Наиболее простым является способ сравнения амплитуд сигналов от противоположных поверхностей изделия и образцов с известной структурой. Для уменьшения влияния упомянутых мешающих факторов измеряют отношение амплитуд сигналов на двух различных частотах. При этом одну из частот (опорную) выбирают заведомо низкой, так что затухание ультразвука слабо зависит от структурных составляющих. Другие частоты (рабочие) соответствуют области максимального затухания (вследствие рассеяния). Отношения амплитуд сигналов, соответствующих рабочим и опорной частотам, называемые структурными коэффициентами, определяют на исследуемом изделии для различных рабочих частот и сравнивают со структурными коэффициентами, полученными на стандартных образцах. Контроль можно проводить на продольных и сдвиговых волнах. Используя частоты 0,65. .. 20 МГц, оценивают величину зерна в аустенитных сталях в диапазоне номеров 1. .. 9. Погрешность определения величины зерна — не более одного балла шкалы.  [c.419]

Характерна как для сталей, так и для чистых металлов следующая зависимость величины износа от среднего размера зерен крупной фракции абразива. Износ возрастает с увеличением среднего размера зерна до некоторой определенной величины. В опытах М, М. Хрущова,. проводимых со сталями, .критическим оказался средний размер зерен крупной фракции около 100 мк. В опытах с чистыми цветными металлами, проведенных К. В. Савицким, критической величиной зерен был размер около 150 мк. Дальнейшее увеличение размеров зерна не вызывало возрастания износа, измеряемого на равном пути трения.  [c.23]

Иногда рекомендуется верхнюю границу температурного интервала горячей обработки давлением устанавливать на основании определения критических температур роста зерна стали при нагреве (табл. 3). Однако при этом следует иметь в виду, что величина зерна стали при обработке давлением не оказывает существенного влияния ни на пластичность стали, ни на ее сопротивление деформированию. Для установления верхней границы более важное значение имеет обследование температуры пережога стали (табл. 4 и 5). Также не имеет принципиального значения и определение интервала критических деформаций, например при осадке в результате рекристаллизации обработки (построение диаграмм П рода).  [c.27]


Зависимость обрабатываемости литой стали и сплавов от их свойств изучена мало. При испытании на растяжение образцы литой стали и сплавов обычно разрываются до образования шейки из-за низкой величины сил связи между зернами металла. Следовательно, действительный предел прочности литой стали и сплавов не может быть определен при растяжении, и получаемые при механических испытаниях характеристики и б не отражают действительных механических свойств, которые проявляются в процессе резания.  [c.174]

К листовой стали для весьма глубокой и глубокой вытяжки предъявляются определенные требования по величине зерна (табл. 2).  [c.404]

Определение величины аустенитного зерна в стали. Величина зерна характеризует склонность стали к перегреву, а также её механические и технологические свойства.  [c.150]

Основными методами определения величины аустенитного зерна являются цементация для цементуемых сталей (метод Мак-Кведа и Эна) и метод окисления для не-цементуемых стал-ей.  [c.150]

Руководящими данными для определения условий ковки и горячей штамповки сталей, обеспечивающих получение заданной величины зерна в поковках и штамповках, могут служить приводимые ниже диаграммы рекристаллизации в координатах степень деформации — температура деформации — величина зерна.  [c.285]

Металлографическая лаборатория. Контрольные испытания микро- и макроструктуры обычно производятся путём сравнения с соответствующими эталонами (микрофотографиями). К числу характерных примеров такого контроля относятся определения а) величины зерна аустенитного и действительного в стали и цветных сплавах, б) неметаллических включений — силикатов, оксидов, сульфидов и пр.,  [c.371]

Диаграммы термических режимов имеют общее значение для нагрева током любой частоты, поскольку построение диаграммы основано на определении твердости или величины зерна на поверхности независимо от того, на каком расстоянии от поверхности сохраняются те же свойства и строение стали.  [c.148]

Обширные исследования, выполненные советскими и зарубежными учеными, показали, что большинство важнейших свойств реальных отливок практически однозначно определяются величиной скорости их затвердевания. На рис. 5, для примера, приведены результаты исследований Б. Б. Гуляева зависимости механических свойств отливок и слитков углеродистой стали от линейной скорости 7 их затвердевания. Графики демонстрируют резкое падение пластичности, менее резкое падение ударной вязкости и еще меньшее понижение предела прочности при замедлении затвердевания стали. Ход кривых находится во вполне определенном соответствии с зависимостью величины зерна от скорости затвердеваний отливок из стали 40Л (рис. 5, г) измельчение кристаллического зерна ведет к повышению механических свойств. Поэтому для правильного понимания связи механических свойств с величиной скорости затвердевания отливок и, следовательно, сознательного управления процессом формирования свойств отливок необходимо располагать достаточно полными представлениями о кристаллизации металлов и сплавов в реальных условиях литья.  [c.161]

Назначение. Контроль соблюдения режимов термической обработки в цехах завода определение величины зерна стали, глубины про-каливаемости, термообработка образцов для металлографических, металлофизических, литейных и других лабораторий, разработка и внедрение новых технологических процессов термообработки, совершенствование-су-  [c.178]

Определение структурных составляющих, степени однородности и величины зерна производится на травленых микрошлифах при увеличении в 100—1000 раз. Травитель подбирается в соответствии с классом стали. Для травления стали перлитного и ферритного классов пользуются 4—5%-ным раствором азотной кислоты в спирте для травления сталей аустенитного класса — реактивом  [c.271]

Трубы из легированных сталей подвергаются микроанализу для определения величины действительного зерна, микроструктуры и загрязненности неметаллическими включениями.  [c.276]

По данным различных работ при большей величине зерна трещиностойкость Кгс возрастает, как эго имеет место в стали (см. рис. 109) и титане. Чем мельче зерно, тем выше предел выносливости (рис. 80, а), который может быть определен по формуле  [c.115]

Выявление и определение величины зерна. Величина зерна определяется различными методами (ГОСТ 5639—65) цементацией, окислением по ферритной или цементитной сетке и травлением границ зерен. По методу цементации образец доэвтектоидной стали насыщают углеродом при 930 °С в течение 8 ч (см. рис. 107). При этом содержание углерода в аустените, находящемся в поверхностной зоне, достигает заэвтектоидной концентрации. При последующем медленном охлаждении по границам зерна аустенита выделяется вторичный цементит, образующий сплошную сетку, по которой после охлаждения определяют величину бывшего зерна аустенита (рис. ПО, а).  [c.162]

Рис. Ш. Шкала для определения величины зерна стали. Цифрами указан номер зерна Рис. Ш. Шкала для определения величины зерна стали. Цифрами указан номер зерна
Стали и сплавы. Методы определения величины зерна.  [c.768]

Методика определения величины з зна в стали. Величина зерна измеряется сравнением микроструктуры стали при увеличении в 100 раз со стандартными размерами зерен, принятыми ГОСТ 5639-51. Эти размеры показаны на фиг. 114, где цифры 1, 2,  [c.187]


Прокаливаемость углеродистой стали. Простые углеродистые стали широко применяются в машиностроении, но термическая обработка их сложна и не всегда дает в поточно-массовом производстве достаточно однородные и высокие механические свойства. Это объясняется тем, что при небольших колебаниях в содержании углерода, марганца и других элементов получается большое различие в прокаливаемости. Например, полученная в результате испытаний большого количества плавок стали марки 45 полоса прокаливаемости (фиг. 154) имеет большую ширину. Это доказывает, что прокаливаемость ее обнаруживает колебания в очень широких пределах. Объясняется это различиями в методе выплавки, разницей в содержании кислорода, азота и водорода, не определяемых при рядовых контрольных анализах, разной величиной природного зерна и разной степенью однородности аустенита в разных плавках. Поэтому необходимо производство стали с определенными узкими пределами прокаливаемости или ее дополнительная сортировка по суженным пределам прокаливаемости. Такая сортировка позволяет устанавливать более рациональный режим и более узкий интервал температур при закалке углеродистых сталей.  [c.242]

При хрупком разрушении величина пластической зоны в устье трещины мала. Скорость распространения хрупкой трещины весьма велика. Для стали скорость роста трещины достигает 2500 м/с. Поэтому нередко хрупкое разрушение называют внезапным или катастрофическим разрушением. Хрупкое разрушение чаще всего происходит по определенным кристаллографическим плоскостям внутри зерна, т.е. имеет место транс-кристаллитное разрушение. Однако при опре-  [c.87]

Филипс [511], рассматривая причины выпадов в стали 18-8 с Ti по межкристаллитной коррозии, когда по соотношению титана и углерода сталь не должна быть склонной к этому виду коррозии, предложил учитывать поверхность межкристаллической прослойки, связанной с величиной зерна, а также содержание хрома в стали. Была установлена определенная зависимость между количеством хрома и свободного углерода в стали, приходящегося на 1 дюйм периметра границы зерна, по формуле  [c.550]

Микроструктура стали также должна удовлетворять определенным требованиям, касающимся величины, равномерности, равноосности зерна и вида химического соединения углерода с железом. Оптимальная величина зерна 7—8 баллов по ГОСТ 5639—65. Зерно большей величины увеличивает шероховатость, что снижает качество последую-  [c.37]

В табл. 4 приведены основные дефекты структуры стали. Ряд методов определения качества структуры стандартизован. Метод определения величины зерна стали (ГОСТ 5639-51). Методы определения неметаллических включений в стали (ГОСТ 1778-62). Эталоны микроструктуры стали (ГОСТ 8233-56 и ГОСТ 5640-59). Метод определения глубины обезуглероживания стальных полуфабрикатов и деталей микроанализом (ГОСТ 1763-42). Метод определения окалиностой-кости стали (ГОСТ 6130-52). Метод испытания стали на чувствительность к механическому старению (ГОСТ 7268-54). Методы испытания на межкристаллитную коррозию аустенитных и аустенитно-ферритных нержавеющих сталей (ГОСТ 6032-58). Методы определения микроструктуры твердых металлокерамических сплавов (ГОСТ 9391-60) и макроструктуры стали (ГОСТ 10243-62). Методы определения структуры серого и высокопрочного чугуна (ГОСТ 3443-57).  [c.8]

Решаюшее влияние на хладноломкость ферритных сталей оказывают иримеси внедрения — углерод и азот. На рис. 24 показано влияние суммарного содержания этих элементов на температуру перехода стали Х17 в хрупкое состояние, определенную испытаниями на ударную вязкость на образцах типа Шарпи. Сталь прошла термическую обработку, имитирующую влияние сварочного цикла — нагрев при 1100° С в течение 10 мин и охлаждение в воде. После указанной термической обработки величина зерна в стали составляла 0,3—0,8 мм. Для того чтобы температура перехода стали Х17 после воздействия термического цикла сварки находилась ниже нуля градусов, что необходимо д.пя падежной службы, содержание углерода и азота в сумме пе должно превышать 0,01—0,015 /о. Увеличение содержашгя ( +N) до 0,02% н более приводит к повышению переходной температуры до 100° С и выше.  [c.33]

В промышленности применяют стали, легированные титаном, молибденом и другими элементами, образующими труднорастворимые карбиды, которые задерживают рост зерна аустенита до определенных температур (например, в сталях 18ХГТ, ЗОХГТ —до 1050—1100° С). В углеродистых сталях зерно аустенита увеличивается не только при высоких, но и при обычных температурах цементации. Заметной разницы в величине зерна при обычной и высокотемпературной цемен-гации нет. Рост зерна при высокотемпературной цементации не превышает  [c.125]

Первичное (природное, наследственное) зерно — зерно, полученное в результате определенной технологической пробы. Первичный размер зерна является технологической характери стикой склонности стали к росту зерна при определенной температуре. По размеру — величине первичного зерна, получаемого по технологической пробе, сталь условно подразделяется на крупнозернистую, (балл 1—4) и мелкозернистую (балл от 5 и более) (фиг. 12, см. вклейку).  [c.41]

Величина зерна не имеет решающего значения в отношении склонности к межкристаллитной коррозии. Наблюдались случаи межкристаллитной коррозии и случаи ее полного отсутствия как для мелкозернистой, так и крупнозернистой стали. Однако для одной и той же стали, отличающейся только величиной зерна (например, если на отдельных образцах той же стали искусственно при высокотемпературных отпусках были выращены более крупные кристаллиты), было установлено, что крупнозернистая структура является менее благоприятной. На рис. 249 (по данным Бейна [4]) видно, что при крупнозернистой структуре склонность к межкристаллитной коррозии проявляется раньше, при более коротких выдержках в интервале температур максимальной чувствительности к межкристаллитной коррозии. При более длительных выдержках склонность к межкристаллитной коррозипи появляется также и у стали с мелким зерном, но имеет несколько меньшую интенсивность (измеренную по глубине межкристаллитного поражения, - определенного при стандартных коррозионных испытаниях).  [c.507]

Капуе [170] сообщил о существовании зависимости между отпускной хрупкостью и величиной зерна аустенита в низколегированных хромоникелевых сталях. Были исследованы две стали (0,3% С 3% Ni 0,75% Сг), содержащие вредные примеси фосфор и цинк. Склонность к отпускной хрупкости сталей с фосфором и цинком усиливается с ростом зерна аустенита (сегрегация элементов на границах зерен) точно также температура перехода ударной вязкости улучшенной хромоникелевой стали с повышенным содержанием примесей зависит от величины у-зерна. Эта же сталь без загрязнений приобретает отпускную хрупкость как при 450, так и при 600° С. Полученные результаты указывают на то, что повышение температуры перехода при росте зерен у-фазы объясняется присутствием примесей. На основании данных работы [170], можно заключить, что предпочтительное растравливание границ зерен аустенита при травлении водным раствором пикриновой кислоты наступает лишь тогда, когда отпускная хрупкость вызывается малым содержанием фосфора. Таким образом, чтобы отпускная хрупкость проявилась при отпуске, необходимо определенное отношение числа сегрегаций на границах к величине зерна.  [c.152]


Форма и размер видимого (действительного) зерна также ока зьЕвают влияние на пластичные свойства стали. Сталь с крупным зерном довольно мягкая, но об.яадает пониженной вязкостью и прочностью на разрыв при вытяжке крупнозернистой стали поверх-нo тIi штамповок делается шероховатой. Сталь с излишне мелким зерном будет, напротив, иметь значительно большую прочность на разрыв, но одновременно будет уве.зичиваться ее твердость и упругость, что также неблагоприятно отражается на штампуемости. Для определения величины зерна имеются эталонные фотоснимки микроструктур, каждому из которых присвоен специальный номер зерна.  [c.423]

Микрострукту ра. Испытание на микроструктуру с определением величины зерна феррита, структурно свободного цементита, перлита, неметаллических включений и строчечности позволяет определять причину брака при прокатке, термической обработке и штамповке листовой стали и принимать меры к его устранению.  [c.351]

Сравнение результатов испытания на ударную вязкость, проведенного после закапки при различных температурах, указывает на то, что существует связь микроструктуры с видом микроповерхности изломов. Из данных, приведенных на рис. 13, вытекает, что ударная вязкость стали в поперечном направлении повышается по мере увеличения температуры закалки до 1173 К и затем снова снижается. Уменьшение ударной вязкости после закалки с более низкой температуры указывает на то, что эта температура слишком низка для полного превращения феррита в аустенит, который несмотря на малое его количество (следы) может снижать ударнук) вязкость после закалки вследствие неоднородности структуры. Повышение температуры закалки до определенной величины приводит к выравниванию структуры и увеличению пластичности. Однака чрезмерное повышение температуры закалки приводит к снижению ударной вязкости в результате увеличения зерна аустенита, а также закалочных напряжений.  [c.26]

На рис. 3.6 показаны построенные по экспериментальным данным кривые, иллюстрирующие для листовой горячекатаной стали 18Сг — 8Ni соотношения между скоростью установившейся ползучести и напряжением напряжением и временем до 5- и 10 %-ной деформации напряжением и временем до начала установившейся ползучести и начала третьей стадии ползучести напряжением образования трещины длиной порядка длины одного кристаллического зерна и напряжением разрушения и соответствующем временем. Необходимо отметить, что кривая начала третьей стадии ползучести на этом рисунке почти параллельна кривой разрушения. Однако при понижении напря.жения отношение времени до образования трещины к общей долговечности уменьшается. Поэтому как и в случае, показанном на рис. 3.6, можно считать, что трещина образуется до начала третьей стадии ползучести и находится в процессе роста из области установившейся ползучести. Одним из критериев для определения зависящего от времени допустимого напряжения St (см. табл. 1.5 или разд. 2.3) согласно Нормам расчета ASME 1592 является величина, соответствующая 80 % напряжения начала третьей стадии ползучести. Из рис. 3.6 ясно, что при напряжениях более низких, чем 100 МН/м , процесс деформации включает и процесс роста трещины при указанном допустимом напряжении. Способ установления допустимых напряжений, при котором в качестве критерия принимают начало третьей стадии ползучести, одинаков со способом, когда в качестве критерия принимают 2/3 напряжения разрушения. Однако, хотя при этом и получают почти одинаковые величины, ограничивающие деформацию, отмеченная аналогия не связана с физическими основами процесса деформации.  [c.54]

Влияние размера аустенитиого зерна на пластичность и ударную вязкость состаренной стали проявляется с определенной величины исход него зерна Это обусловлено изменением мест зарождения трещин — от зарождения на частицах карбонитридов и оксисульфидов к зарожде иню на границах мартенситных пластин и аустенитных зерен С пони жением температуры аустенитизацин повышаются прочностные свойства мартенситно стареющей стали после старения особенно если после за калки следует холодная пластическая деформация (рис 115)  [c.200]


Смотреть страницы где упоминается термин Сталь Зерна — Величина — Определение : [c.362]    [c.12]    [c.508]    [c.231]    [c.415]   
Чугун, сталь и твердые сплавы (1959) -- [ c.210 ]



ПОИСК



280—282 — Величина Определение

Зерно

Зерно определение величины

Сталь 129—135 — Определение



© 2025 Mash-xxl.info Реклама на сайте