Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Границы травления

Если слиток загрязнен неметаллическими включениями, обычно располагающимися по границам кристаллитов, то в результате обработки давлением неметаллические включения вытягиваются в виде волокон по направлению наиболее интенсивного течения металла. Эти волокна выявляются травлением и видны невооруженным глазом в форме так называемой волокнистой макроструктуры (рис. 3.3, а). Полученная а результате обработки давлением литого металла во-  [c.58]


При испытании методом анодного травления (метод Б) исследуемый образец или готовое изделие включается в качестве анода в цепь постоянного тока. Катодом служит свинцовый сосуд, в который наливается электролит. После испытания методом анодного травления на поверхности металла остается отпечаток, 1 де в с.пучае наличия склонности стали к межкристаллитной коррозии при увеличении не менее Х20— ХЗО ви.ана непрерывная сетка протравленных границ. зерен.  [c.345]

В момент образования границы зерен располагаются в зоне срастания первичных кристаллитов и по форме совпадают с их разветвленными контурами. Зоны срастания выявляются как обогащенные примесями ликвационные участки, имеющие отличную от центральных участков кристаллитов степень травления реактивами. Интенсивность травления плавно изменяется по ширине зоны в несколько единиц или десятков микрометров (рис.  [c.502]

При травлении границы зерен проявляются в виде четкой тонкой линии шириной около 10 мкм, т. е. на два порядка меньшей, чем ширина зон срастания (рис. 13.11). Эффект травления границ связан со скоплением примесей в результате процесса их сегрегации в приграничных зонах с искаженной решеткой. В случае малого количества примесей в металле или быстрого охлаждения, когда диффузионный процесс сегрегации не успевает произойти, эффект травления ослабевает или исчезает полностью. На свободной, чистой от оксидов поверхности границы зерен выявляются в виде канавок термического травления. Канавки образуются в результате местной пластической деформации, вызванной уравновешиванием сил граничного и поверхностного натяжения. Термическое травление не связано с сегрегацией примесей, поэтому оно выявляет границы в низколегированных сплавах и чистых металлах, а также в случае больших скоростей охлаждения после затвердевания литого металла.  [c.503]

I. Межзеренные границы имеют повышенную химическую травимость, причем скорость травления границ  [c.166]

Субграницы с малым углом разориентации проявляются при травлении не в виде сплошных линий, как это имеет место при травлении межзеренных границ, а состоит из отдельных ямок (фигур) травления. Их плотность зависит от взаимной ориентации субзерен, а расстояние между ямками совпадает с расчетными значениями для расстояния h (см. рис. 21) в стенке дислокаций, из которых состоит стенка субзерна.  [c.167]

Интересные сведения об ориентировке зерен можно получить из анализа расположения в них линий скольжения и когерентных границ двойников, а также с помощью цветного окрашивающего травления. Разная окраска зерен, различно ориентированных в поверхности шлифа, может быть достигнута разными методами тепловым травлением в разных газовых средах, нанесением окис-ной пленки и рассмотрением ее в поляризованном свете и др.  [c.273]


Рис. 177. Дислокационные малоугловые границы (стенки), образовавшиеся при полигонизации монокристалла Fe+3,5 % Si и выявленные с помощью ямок травления Рис. 177. Дислокационные <a href="/info/7179">малоугловые границы</a> (стенки), образовавшиеся при полигонизации монокристалла Fe+3,5 % Si и выявленные с помощью ямок травления
Непосредственные наблюдения за ростом зерен показали, что истинная скорость роста в отличие от средней не постоянна во времени. Рост зерен, как правило, происходит скачкообразно, причем максимальные значения скорости (в момент скачка) выше средней скорости не менее чем на порядок. Причины этого еще не совсем ясны и вероятнее всего связаны со структурой границ, действием примесей и канавками термического травления.  [c.339]

У нелегированного молибдена микротвердость границ зерен на 10— 40 % выше, чем тела зерен легирование бором приводит к выравниванию микротвердости и уменьшению величины зерна. На поверхности излома нелегированного молибдена хорошо видны избыточные фазы (вероятно оксиды), хотя они не были обнаружены по границам зерен микрошлифов приграничные зоны с повышенной микротвердостью легко поддавались травлению с образованием канавок.  [c.133]

Металлографический метод является разрушающим и пригоден преимущественно в лабораторных исследованиях. Он заключается в измерении толщины покрытий при помощи оптических микроскопов на поперечных шлифах. В зависимости от толщины покрытия рекомендуется выбирать следующие увеличения 500—1000 крат до 20 мкм, 200 крат свыше 20 мкм. Приготовление шлифа должно выполняться в соответствии с рекомендациями для изготовления металлографических образцов. Особое внимание следует обратить на предотвращение отслаивания и выкрашивания покрытия. Если между покрытием и основным металлом отсутствует четкая граница, то для получения наибольшего контраста можно применять травление шлифа. Относительная погрешность измерений 10%, Не-  [c.84]

Изучение структуры границы и переходной зоны между покрытием и основным металлом связано с определенными трудностями. Во-первых, необходимо применять раздельное травление материалов покрытия и основного металла, что затрудняет получение качественного объекта исследования. Во-вторых, если при напылении образуется переходная зона, то размеры ее обычно невелики, и вследствие этого сложно получить достоверную информацию о структуре приграничных участков.  [c.156]

Наиболее известный метод приготовления металлических образцов — электрополировка — не пригоден для изучения покрытий по следующим причинам значительная анизотропия и структурная неоднородность покрытий приводят к избирательному травлению, предотвратить которое практически не удается многие покрытия не являются электропроводными поры и микротрещины, обычно имеющиеся в покрытиях, будут растравливаться, увеличиваясь в размерах и искажая реальную структуру покрытие и основной металл обладают отличающимися химическими свойствами, поэтому травление комбинированного образца (основной металл с покрытием) будет преимущественно развиваться на одном из участков или на границе раздела.  [c.177]

Травление в токе раствора часто применяют для больших образцов, например для поперечных сечений литых слитков, которые были только отшлифованы. Реактив наносят чаще всего из капельницы на слегка наклоненную самую высокую часть поверхности шлифа. Травление в токе раствора необходимо также для маленьких шлифов, если вследствие выделения газов во время травления газовые пузырьки осаждаются на поверхности шлифа. Газовые пузырьки можно удалить ватным тампоном или быстрым током реактива. При обработке в токе раствора на результаты травления оказывает влияние кислород воздуха, что имеет большое значение при многих видах травления. Влияние кислорода используют при травлении погружением. Образец вынимают из раствора, дают стечь реактиву и вновь погружают в раствор. Этот процесс повторяют до четкого выявления структуры, главным образом границ зерен.  [c.16]

Картина электролитического травления доэвтектоидной стали в спиртовом растворе соляной кислоты получается такой же, как при травлении в спиртовом растворе азотной кислоты. Для выявления структуры зерен анодным травлением применяют раствор персульфата аммония, однако при равной глубине травления перлита границы зерен феррита менее отчетливы, чем при использовании спиртового раствора соляной кислоты.  [c.18]


Границы зерен, выявленные тепловым травлением в расплавах солей, — широкие, а в вакууме или нейтральном газе — тонкие. Широкие границы зерен указывают на внедрение соли в зеренный шов, который образуется при перекристаллизации вследствие неравномерного расширения и сжатия.  [c.21]

В кислородсодержащих медных образцах при тепловом травлении в вакууме можно обнаружить границы зерен и двойники с выраженной параллельной направленностью в плоскости зерна [27]. У чистой меди это явление при тепловом травлении не наступает даже в кислородсодержащей атмосфере.  [c.21]

Продолжительность травления, т. е. время воздействия травящего реактива, определяется не только степенью диссоциации раствора, его температурой и химическим составом, но также плоскостью фаз, подлежащих выявлению. Кратковременное травление (менее 1 мин), т. е. выявление границ и поверхностей зерен, если позволяет окраска травильного раствора, проводят без замера времени. Результат травления оценивают по внешнему виду шлифа. Время, как правило, указывают ориентировочно. В травителях темного цвета, нанример перманганате калия, или при длительном травлении от одного до нескольких часов, невозможно оптически проследить процесс травления, поэтому необходимо давать ориентировочное время травления.  [c.24]

При работе с азотной кислотой следует помнить, что она протравливает границы зерен при низких температурах (18—20° С), а при высоких температурах выявляет поверхность зерен. Поэтому ее не применяют в экспериментах продолжительность травления—температура .  [c.24]

Лиль [37] установил, что при травлении технических железных сплавов возникают значительные поверхностные напряжения (напряжения сжатия), что выражается в увеличении параметров решетки (от 4-10 до 9-10" единиц). Это поверхностное состояние, напряжение травления, создается предположительно во время снятия поверхностного слоя химическим или электролитическим способом при определенной концентрации кислоты. Величина напряжения травления зависит от материала, от его термообработки (тонко- или грубозернистая структура), а при электролитической полировке — также от плотности тока, и не зависит от вида применяемой кислоты. Имеются различные гипотезы, объясняющие возникновение напряжения при травлении. Точка зрения, которая основана на том, что при термообработке загрязнения и примеси выделяются дисперсно на границах зерен и мозаики и что вследствие сильного взаимодействия с реактивом в этих зонах напряжения травления должны сниматься, является самой достоверной. Это подтверждается тем, что у электролитического железа не обнаруживается никаких изменений постоянной решетки. В результате возможного наложения внутренних напряжений и напряжения травления усложняется определение фактического напряженного состояния.  [c.25]

Так как все металлы — вещества непрозрачные (для видимого света), то форму кристаллов, а также их размер и взаимное расположение изучают на специально изготавливаемых микрошлифах. В этом случае делают разрез металла в плоскости, интересующей исследователя. Затем полученную плоскость шлифуют и полируют до зеркального состояния Чтобы выявить структуру, следует создать рельеф или окрасить в разные цвета структурные составляющие, что достигается обычно химическим травлением. При травлении кислота в первую очередь воздействует на границы зерна, как места, имеющие наиболее дефектное строение и которые в травленом шлифе станут углублениями свет, падая на них, будет рассеиваться (рис. 18), и в поле зрения микроскопа они будут казаться темными, а тело зерна - светлым отражения or илос (рис. 1У). кости зерна и от его границ  [c.37]

Обычно поступают следующим образом. После приготовления микрошлифа на его поверхность наносят слой вещества (лак, углерод, кварц и т. д.) очень малой толщины. Образуется слепок, с большой точностью воспроизводящий рельеф шлифа (рис. 20). Затем слепок снимают со шлифа и помещают в электронный микроскоп. В тех местах, где слепок толще (в местах разницы в глубине травления), электроны рассеиваются сильнее и таким образом выявляется граннца между отдельными структурными составляющими сплава и границами зерен. Вещество, которое наносят на поверхность.  [c.39]

Для фиксирования положения границ аустенитного зерна [фименяют разные способы, например замедленное охлаждение, способствующее выделению по этим границам избыточных фаз (феррита, цементита и др.) длительный нагрев, вызывающий проникновение кислорода вглубь по границам зерен, м образование сетки из окислов, специальные методы травления мартенсита травление в вакууме ири высокой температуре,, при которой растравливаются лишь границы.  [c.240]

Оказывается также, что наряду с этим происходит обогащение границ зерна фосфором, выявляемое травлением пикриновой кислотой (рис. 294,а). Такое же травление стали, находящейся в вязком состояни(г, не выяп-ляет границ зерен (рис, 294,6).  [c.375]

В тех случаях, когда невозможен загиб образцов, и в сомнительных случаях производят металлографическое исследование на шлифах, изготовленных из незначительно изогнутых (на угол 10—15 ) или неизогнутых образцов. Просмотр и фотографирование шлифа проводят при увеличении 250—400 раз. При обнаружении трещин на нетравленых шлифах характер коррозионного разрушения определяют на травленом шлифе. Браковочным признаком является разрушение границ зерен металла а) на глубину более 30 мкм при гГовышенной травимости границ зерен по всей поверхности шлифа б) на глубину более 50 мкм при повышенной  [c.452]

Плотность дислокаций экспериментально определяют путем подсчета числа вьипедших на единицу площади шлифа дислокационных линий. На рис. 12 показаны следы травления дислокаций, расиоло-ж енных по границам блоков железа.  [c.24]

В случае применения метода окисления металлографический шлиф нагревают в защитной атмосфере и после окончания выдержки в печь подают воздух. Границы бывших зерен аустенита выявляются сеткой окислов (рис, 98, б). Метод, оспованный на образовании сетки феррита, применяют для доэвтектоидных, а методы образования сетки цементита — для заэвтектоидных сталей. Образцы нагревают до заданной температуры и охлаждают со скоростью, обеспечивающей образование сетки феррита или цементита (рис. 98, в). Нередко зерно аустенита определяют на образцах после закалки и отпуска при 225—550 Т путем травления микрошлифа в растворе  [c.159]


Опытный калильщик часто уже по внешнему виду закаленной поверхности, ее цвету может заключить правильно ли выбрана температура нагрев а поверхности, указать 1раиицы закаленного слоя, устаиовить наличие мягких пятен, трещин, но это не исключает необходимости травления закаленной поверхности для оиределеиия границ закаленного слоя, люминесцентного анализа на трещины, измере[П1я твердости поверхности.  [c.62]

В результате МТО, как уже отмечалось, в металлах и сплавах образуется полигональная структура, возникающая в результате выстраивания дислокаций одного знака в стенки. Высокая устойчивость дислокационных стенок к действию термических флуктуаций обеопечивает высокую сопротивляемость ползучести металлов и сплавов с полигональной структурой. Химическим путем полигональная структура наиболее эффективно выявляется теми реактивами, которые вытравливают места выхода дислокаций. Ниже приводятся результаты микроскопического исследования [68] с помощью светового и электронного микроскопов структуры аустенитной стали 1Х18Н9 после МТО. Поверхность образцов предварительно электропо-лировали в растворе 35 а хромового ангидрида и 250 г орто-фосфорной кислоты. До и после МТО для выявления структуры поверхность травили в водном растворе щавелевой кислоты (10 г щавелевой кислоты на 100 г воды) при малых плотностях тока продолжительность травления не превышала 30 сек. Электролитическим травлением выявляются пятна травления, соответствующие местам выхода дислокаций на поверхность металла, а также границы зерен.  [c.35]

У стали 1Х18Н9 в исходном состоянии пятна травления располагаются хаотически по объему зерна (фиг. 7, а). Чтобы раздельно изучить влияние силового и температурного факторов при МТО на структуру мате-риала, часть образцов предварительно деформировали на 10% при комнатной температуре. После такой обработки в структуре стали выявляется (еще до травления) отчетливый микрорельеф благодаря развитию полос скольжения по активным плоскостям, однако признаки образования субструктуры при этом отсутствуют, так как последующее травление показывает, что большая часть дислокаций еще не связана с выявленными следами пластической деформации и распределяется беспорядочно по телу зерен (фиг. 7, б). В то же время после длительного отжига деформированных образцов при температуре 600° (фиг. 7, в) образуется ярко выраженная субструктура вследствие выстраивания дислокаций в ряды. В результате этого у большинства зерен наблюдается четкая сетка субграниц, причем имеется определенная связь между расположением этих границ и следами скольжения при предварительном деформировании образца.  [c.35]

Особенности структуры струйно-плазменных покрытий могут быть выявлены исследованиями на нетравленых шлифах и на шлифах после травления. В плоскости, перпендикулярной поверхности покрытия (поперечный шлиф), структура большинства нетравленых струйно-плазменных покрытий имеет ярко выраженный слоистый характер (фото 18, а). Однако в некоторых случаях слоистость нетравленых покрытий отчетливо не проявляется, например в покрытии ПН70ЮЗО (фото 18, б). Химическое травление позволяет обнаружить границы между отдельными слоями и равноосными объемами, образующимися при напылении (фото 18, в, г). В плоскости шлифа, параллельной поверхности основного металла, структура нетравленого покрытия отличается от структуры, наблюдаемой при исследовании поперечных шлифов. Наряду с порами и отдельными незамкнутыми границами можно увидеть параллельные замкнутые границы, по форме близкие к окружностям (фото 18, д). Образование этих колец является следствием расплющивания при плазменном напылении отдельных частиц порошка.  [c.159]

Нами разработана методика исследований скоростных микро-структурных изменений в стали при высоких температурах и пластической деформации [275]. При рассмотрении недеформированного аустенита этот метод имеет существенное преимущество перед вакуумным травлением, так как он фиксирует структуру аустенита практически мгновенно, что важно для динамических процессов резко выделяет слаботравящиеся двойниковые границы созданием цветового контраста пограничных объемов надежно исключает из рассмотрения в качестве границ следы движения границ аустенитных зерен отличается большой наглядностью.  [c.181]

В специальных главах рассмотрены способы металлографического исследования сталей, чугунов, цветных металлов и их сплавов. К каждой главе дана небольшая вводная часть, где указаны характерные свойства данного материала и особенности выявления структуры. PeiaKTHBbi, как правило, подразделены на травители для выявления макро- и микроструктуры, среди которых выделяют реагенты для выявления общей структуры, границ и поверхностей зерен, отдельных фаз, неметаллических и окисных включений, дислокаций, фигур травления, фигур деформации и т. д.  [c.7]

В настоящее время структуру выявляют исключительно путем химического или электролитического травления, при этом реактив взаимодействует с полированной поверхностью шлифа. При травлении поверхность шлифа растворяется или окрашивается тонким слоем продуктов травления. Под действием реактивов в металлах и сплавах прежде всего растворяются выделения на границах зерен, имеющие иную химическую природу. Каждая фаза растворяется по-разному одна структурная составляющая растворяется в реактиве быстрее, другая — медленнее. Структура становится видимой, при этом отражательная способность шлифа испытывает изменения, которые внутри кавдой фазы одинаковы независимо от условно ориентированного воздействия реактива. Возникает рельеф, который состоит из выступающих фаз. Благодаря этому становятся видимы контуры структурных составляющих. При применении косого освещения контуры четко различимы благодаря свету и тени.  [c.15]

Теоретическое вычисление потенциала показало, что при травлении в спиртовом растворе соляной кислоты из-за незначительной проводимости создается разность потенциалов на поверхности шлифа. Вследствие этого границы зерен сильнее растворяются и тем самым они отчетливо выявляются. Карбид и фосфид железа выявляются в гидроксиде натрия при различных потенциалах. Условия выявления этих фаз в белом томасовском чугуне в Юн. растворе NaOH следующие Feg (темная) — 350 мВ, 190 мА/см , FegP + 100 мВ, 115 мА/см.  [c.18]

Лоскиевич [36] исследовал влияние продолжительности и температуры травления на выявление структуры углеродистой стали азотной и пикриновой кислотами. Продолжительность травления определяли по времени, которое было необходимо для отчетливого выявления пластинчатого перлита и границ зерен феррита без значительного растравливания. При определенной температуре было найдено время для достижения лучшего результата травления путем изменения концентрации реактива. На рис. 10 для стали с содержанием 0,3% С представлена зависимость длительности травления от температуры реактива. Эта зависимость имеет приблизительно линейный характер.  [c.24]

Выявление границ зерен зависит от величины угла их границ. Граница зерна представляет сечение плоскости шлифа плоскостью разграничения кристаллов. Можно наблюдать, что граница на одной стороне зерна выявляется плохо вследствие приблизительно одинаковой ориентации соседнего кристалла и обнаруживается на другой стороне зерна в результате большой разницы в ориентации. С увеличением продолжительности травления границы зерен утолщаются вследствие увеличения глубины резкости и распространения плоскости границ зерен в третьем измерении (образуется большой уступ). Лакомбе и Яннаквис [1] на  [c.27]



Смотреть страницы где упоминается термин Границы травления : [c.463]    [c.38]    [c.158]    [c.490]    [c.313]    [c.30]    [c.87]    [c.862]    [c.40]    [c.101]    [c.91]    [c.12]    [c.22]    [c.28]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.45 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.83 ]



ПОИСК



Травление

Травленне



© 2025 Mash-xxl.info Реклама на сайте