Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженное состояние в зоне контакта трения

В период заклинивания и при заклиненном состоянии механизма на поверхностях соприкосновения ролика и обойм, кроме нормальных сил действуют силы трения, которые изменяют напряженное состояние в зоне контакта и увеличивают контактные напряжения. Максимальное контактное касательное напряжение (при значении коэффициента Пуассона 0,3) будет равно  [c.87]


Упругое оттеснение. Данный вид напряженного состояния в зоне контакта возникает при трении высокопрочных материалов, а также в период установившегося изнашивания. Разрушение носит усталостный характер (фрикционная усталость). Число циклов до разрушения велико п -> оо). Для сталей h/R < 0,01 для цветных металлов h/R < 0,0001.  [c.392]

Эти формулы получены для неподвижного контакта. При взаимном перемещении деталей от сил трения возникают касательные напряжения (напряжения сдвига), которые изменяют характер напряженного состояния в зоне контакта.  [c.46]

Так, Б. С. Ковальским, М. М. Савериным и др. проделаны исследования напряженного состояния в зоне контакта при совместном действии нормальной и касательной сил последняя есть сила трения. Было показано, что ширина контактной площадки и закон распределения давления поперек полоски контакта при наличии сил трения отличаются от вычисленных по Герцу.  [c.186]

Эта формула рекомендуется в качестве исходной расчетной зависимости на основе следующих соображений. При работе зубчатых колес на боковых поверхностях зубьев возникают силы трения, которые изменяют напряженное состояние в зоне контакта и увеличивают максимальное касательное контактное напряжение. Если принять коэффициент трения равным 0,2 и неизменным по ширине 2Ь полоски контакта, то Тшах = О,340 на глубине 0,46) [134]. Это напряжение почти не отличается от напряжения сдвига при параболическом законе распределения нагрузки поперек полоски контакта.  [c.188]

В зоне сжатия опережающей поверхности (рис. 233, в) происходит сближение и сдвиг волокон материала в направлении, указанном стрелками. В зоне растяжения волокна, упруго расправляясь, перемещаются в том же направлении. На отстающей поверхности волокна перемещаются в обратном направлении. В результате на поверхности контакта возникают силы трения, отклоняющие действующие силы от нормали к площадке контакта. Тангенциальное сжатие и растяжение изменяют вид напряженного состояния в зоне контакта.  [c.328]

Между процессами в зоне первичной деформации и на передней поверхности инструмента существует тесная и взаимообусловленная связь. Любое изменение условий трения в пределах площадки контакта влияет на протекание деформационных процессов и характер стружкообразования. Наоборот, изменение условий стружкообразования через изменение температуры и скорости стружки влияет на контактные процессы на передней поверхности. Таким образом, всякое изменение напряженного состояния в одной из зон вызывает соответствующее изменение напряженного состояния в другой зоне. Если по каким-либо причинам изменится средний коэффициент трения на передней поверхности, то из-за изменения напряженного состояния в зоне контакта стружки изменится величина силы стружкообразования Я и момента М (рис. 95), с которыми инструмент действует на стружку. Для сохранения равновесия стружки должна измениться величина силы Яс и момента Мс, с которыми срезаемый слой действует на стружку, но это изменит напряженное и деформированное состояния в зоне первичной деформации со всеми вытекающими отсюда последствиями. Изменение деформированного состояния в зоне I вызовет изменение температуры и контактных напряжений в зоне трения и, как следствие, изменение напряженного состояния и т. д. В процессе резания за счет саморегулирования в зонах /и// устанавливаются такие напряженные состояния, при которых соблюдается условие равновесия стружки.  [c.134]


На основе анализа кинематики и геометрии трущегося сочленения разработана классификация пар трения, позволяющая приближенно оценить возможность проявления в них ИП. Направленность скольжения в сочетании с геометрией трущихся поверхностей в узле трения определяют следующие параметры характер напряженного состояния контактных зон режим трения по условиям смазки относительную длительность контакта локального участка поверхности трения.  [c.55]

Наряду с разрушением и образованием связей, обусловленными межатомными и межмолекулярными взаимодействиями, относительное скольжение сопровождается деформированием материала поверхностных слоев в зонах фактического касания. Сопротивление скольжению, обусловленное этим деформированием, называют деформационной составляющей силы внешнего трения. Ее величина существенно зависит от вида деформаций в зонах фактического касания. Анализ напряженного состояния в зонах реального контакта и проведенные исследования показывают, что обычно более жесткие микронеровности одного нз контактирующих тел внедряются в менее жесткую поверхность другого. Различие в жесткостях контактирующих тел объясняется механическими и геометрическими неоднородностями свойств поверхностных слоев.  [c.191]

Монография посвящена обобщению исследований авторов в области статических и динамических задач контактного взаимодействия тел сложной конфигурации, неоднородных тел и задач с усложненными условиями в зоне контакта на основе разработанных аналитических методов. Актуальность темы монографии обусловлена важностью технических приложений теории контактных взаимодействий, которая находит широкое применение в машиностроении, строительстве, электронике и других отраслях человеческой деятельности. Несмотря на значительный прогресс в этой фундаментальной области знаний, на практике изучение реальной картины напряженно-деформируемого состояния в зоне контакта взаимодействующих тел потребовало исследования новых контактных задач и разработки новых методов расчета. Это прежде всего относится к контактным задачам для тел конечных размеров канонической и неканонической формы, периодически неоднородных тел, пространственным контактным задачам и к задачам с учетом сил трения в области контакта, в том числе с заранее неизвестной областью контакта. Численные методы в чистом виде во многих случаях не решают возникающих здесь проблем.  [c.5]

Так как силовые воздействия твердых тел при внешнем трении существенно зависят от напряженно-деформированного состояния в зонах контактов микронеровностей, рассмотрим определение сил и коэффициентов трения при упругих и пластических деформациях в этих зонах. Силовые взаимодействия для рассматриваемых случаев являются, как правило, минимальными при упругих деформациях и максимальными при пластических.  [c.96]

Трение качения. В зоне контакта тел качения с беговыми дорожками колец происходят сложные физические процессы, приводящие к потерям механической энергии. В результате равнодействующая поверхностных напряжений в зоне контакта при качении не совпадает с направлением общей нормали (рис. 13.16, б), как то имеет место в состоянии покоя (рис. 13.16, а). Касательную составляющую этой равнодействующей называют силой трения качения Кт.к- По аналогии с трением скольжения эту силу принято выражать через нормальное давление / лэ полагая  [c.337]

Важным фактором, влияющим на структуру поверхностного слоя, являются окислительные процессы, которые быстро развиваются в новых поверхностях, появившихся в процессе обработки, i У большинства металлов на поверхностях образуются тонкие окисные пленки. Так как пленка находится в напряженном состоянии, то при ее росте возможны разрывы пленки и она приобретает пористое строение. При трении поверхностей деталей машин тонкие слои подвергаются в зоне контакта многократным воздействиям нормальных и тангенциальных напряжений, в сочетании с температурными влияниями и действием среды приобретают рельеф, характерный для данных условий эксплуатации. Поэтому следует различать принципиально неодинаковые виды рельефа поверхности—технологический и эксплуатационный [90 L  [c.77]


Влияние вида трения. Износ всегда связан с относительным перемещением и может иметь место при трении скольжения, качения и качения с проскальзыванием. Как было показано,, при анализе фрикционных связей для протекания процесса изнашивания необходимо их многократное возникновение и разрушение при относительном смещении микровыступов. Это условие выполняется при относительном скольжении поверхностей. Однако и при чистом качении упругих тел в зоне контакта возникают сложные явления, связанные с напряженным состоянием [80 140] и с проскальзыванием, которые могут привести к их изнашиванию, а не только к усталости поверхностных слоев.  [c.246]

Особенности напряженного состояния при внешнем трении, связанные с совместным действием нормальных и тангенциальных сил (при этом поверхностные слои в зоне контакта находятся в условиях всестороннего сжатия), обусловливают и особенности  [c.33]

Напряжения, возникающие при нажатии одной части конструкции на другую в месте их соприкасания, называются контактными. Первоначальное точечное касание тел, ограниченное криволинейными поверхностями из-за деформации, переходит в соприкасание по некоторой площадке, имеющей в общем случае эллиптическую форму. Около этой площадки материал испытывает объемное -напряженное состояние. Величина контактных напряжений очень быстро убывает при удалении от площадки соприкасания. Предпосылки материалы соприкасающихся тел однородны й изотропны площадка контакта весьма мала по сравнению с общими размерами поверХ -ностей соприкасающихся тел нагрузки, приложенные к телам, вызывают в зоне контакта только упругие деформации, подчиняющиеся закону Гука силы давления нормальны к поверхности соприкасания тел силами трения по площадке контакта пренебрегают.  [c.52]

В монографии В. А. Бабешко, Е. В. Глушкова, Ж. Ф. Зинченко [14 глава IV посвящена анализу особенностей напряженно-деформированного состояния в окрестности угловых точек покоящихся пространственных штампов при произвольных условиях контакта и во всем диапазоне изменения угла раствора 9. Излагается единая методика решения, основанная на сведении рассматриваемых задач к задаче отыскания полюсов преобразования Меллина некоторой функции, связанной с контактным давлением. Исследованы конкретные задачи. В частности, случай, когда жесткий клиновидный в плане штамп взаимодействует с поверхностью упругого однородного полупространства. Предположено, что в зоне контакта возникают силы кулоновского трения с коэффициентом О <5 1. Штамп находится в состоянии предельного равновесия под действием горизонтальной сдвигающей силы.  [c.141]

На схеме напряженно-деформированного состояния материала в зоне трения (рис. 3.2) показаны зона сжатия впереди движущегося элемента контакта и зона растяжения сзади него, а также области упругой и упругопластической деформации. В условиях трения каждый элементарный поверхностный объем многократно воспринимает знакопеременные нафузки, влияющие на механизмы деформации и разрушения.  [c.64]

От скорости качения и удельной скорости скольжения зависят напряжения, тепловое состояние зоны контакта и физико-механические изменения поверхностного слоя. Кратковременные перегрузки зубчатых колес, сопровождаемые разрушением масляной пленки, а также пуски тихоходных передач, находящихся под нагрузкой, повышают контактную прочность вследствие износа материала с зачатками усталостных трещин. Влияние смазочного материала сложное повышение его вязкости положительно влияет на нагрузочную способность передачи, однако увеличивает силы трения и касательные напряжения. Контактная прочность зубьев колес при недостаточном смазывании погружением выше, чем при обильной подаче масла при смазывании погружением она больше, чем при струйном. Это можно, видимо, объяснить большим гидродинамическим давлением в зарождающихся усталостных трещинах при струйном смазывании, когда оно производится жидким маслом, а не в смеси с воздухом.  [c.249]

В химической промышленности широко применяются многослойные сосуды высокого давления. Под действием внутреннего давления многослойная цилиндрическая стенка из-за контактных сближений поверхностей отдельных слоев деформируется не так, как однослойная. В зоне сопряжения многослойного цилиндра с днищем возникает повышенный уровень напряжений по сравнению с аналогичной зоной однослойного цилиндра. Ранее эта задача решалась авторами на основе совместности деформаций многослойного цилиндра с полусферическим или эллиптическим днищем [1, 2]. При этом силы трения, возникающие на границе контакта слоев, не учитывались. Ниже рассматривается методика расчета многослойного цилиндра, сопряженного с монолитным элементом днищем, фланцем илй горловиной, учитывающая влияние сил трения на возможность проскальзывания слоев многослойного цилиндра. Напряженно-деформированное состояние монолитного элемента в этом случае определяется с помощью метода конечных элементов (МКЭ). Это позволяет решать данную задачу сопряжения многослойного сосуда с монолитным элементом - днищем, фланцем или горловиной - любой встречающейся на практике формы.  [c.59]

Эти представления развиты в основном применительно к разрушению металлов в объеме. Их использование для объяснения процессов разрушения при трении возможно при условии учета ряда существенных особенностей. Эти особенности поверхностного разрущения связаны в основном со спецификой напряженно-деформируемого состояния поверхностных слоев и неизмеримо большим значением физикохимического действия рабочих сред, заполняющих зону контакта.  [c.287]


Взаимодействие поверхностей расслоения, способное вызвать генерацию АЭ, возможно при выполнении двух условий возникновении областей контакта поверхностей и их взаимном проскальзывании. Реализация этой ситуации возможна в случае, когда в материале, в зоне расслоя, возникает сложно-напряженное состояние с сжимающим и сдвиговым компонентом напряжения на поверхности расслоя. При этом сдвиговые смещения на поверхности расслоя могут стимулироваться его взаимодействием со стенками трубы. Указанный фактор возрастает с увеличением отношения протяженности расслоя 2L к глубине залегания h и становится существенным при L > h. В этом случае возникновение взаимодействия поверхностей расслоя и генерация АЭ будут зависеть от ряда факторов величины нормальных нагрузок, расположения расслоя (отношение l/h), параметров сил трения. Нормальная нагрузка определяется дру я компонентами сжимающими напряжениями =-Р Х/Н, где Р - давление рабочей среды в трубе Н - толщина стенки X - глубина залегания расслоя, если отсчет вести от наружной поверхности стенки трубы и давлением газа Рн, которое может находиться внутри расслоения.  [c.99]

По мере дальнейшего относительного смещения тел происходит непрерывное распространение пластических деформаций в глубь слоя. Одновременно увеличивается глубина застойной зоны металла, который движется как одно целое с контртелом. Вследствие непрерывного увеличения размеров застойной зоны возрастает объем оттесняемого материала. Деформированное состояние материала на этой стадии схематически изображено на рис. 28, в. Так как глубина слоя заторможенного материала велика, сзади контакта возникают растягивающие напряжения, затем появляется трещина, приводящая к выкалыванию или выдиранию упрочненного материала застойной зоны. Вырванная частица, как правило, удерживается вследствие холодного сваривания на поверхности контртела в виде нароста. Сильно упрочненный нарост при дальнейшем относительном скольжении тел выступает в роли микронеровности, выцарапывающей поверхность более мягкого материала. При этом может повторяться по несколько раз процесс схватывания между наростом и поверхностью более мягкой детали. Размеры нароста со временем стабилизируются. При определенной величине зазора между поверхностями оттесняемый материал формируется в стружку и удаляется из зоны трения в виде продуктов износа [61].  [c.90]

Величина силы трения, возникающей на единичной микронеровности контактирующих тел, зависит от ее геометрической конфигурации, напряженного состояния в зоне контакта, механических свойств поверхностного слоя менее л<есткого из взаимодействующих тел и физико-химического состояния поверхностей контактирующих тел. В общем случае мнкронеровности поверхности не имеют правильной геометрической формы, их форма близка к форме сегментов эллипсоидов, большая полуось которых совпадает с направлением обработки поверхности. При вычислениях сил трения и интенсивностей износа наиболее широко распространена сферическая модель шероховатой поверхности. Согласно этой модели микронеровности считают шаровыми сегментами постоянного ра. Диуса.  [c.191]

СТЕНЯМИ, нужно определять при следующих условиях напряженное состояние в зоне контакта образцов должно совпадать с напряженным состоянием в зонах фактического касания твердых тел при треиин физикохимические свойства образцов и поверхностей трения должны быть аналогичны деформационная составляющая силы трения при определении т , Тц и fS должна быть мннималыюй.  [c.222]

Оценка несущей способности силового фрикционного контакта в машинах производится на основе анализа напряженного и деформированного состояния при помощи методов теории упругости. Систематическое исследование деформации контактирующих упругих тел и напряженного состояния поверхностных и приповерхностных слоев материалов началось с работ Г. Герца. К настоящему времени обстоятельно изучено влияние касательных сил на напряженное и деформированное состояние контакта при различной его геометрии [1, 5, 7, 25, 26, 28, 39]. Касательная нагрузка, силы трения значительно влияют на напряженное состояние в зоне контакта и на характер разрушения материала — глубинное или поверхностное. При малых касательных нагрузках прочность материала определяется глубинными напряжениями, при больших - поверхностными. С ростом касательной нагрузки наиболее напряженная точка перемещается ближе к поверхности. При перекатьгаании тел касательная нагрузка оказывает влияние как на величину, так и на амплитуду изменения компонентов напряжения в поверхностной зоне контакта. Силы трения увеличивают напряжение сдвига в тонком поверхностном слое на отстающих поверхностях и уменьшают их на опережающих, чем и объясняется большая прочность опережающих поверхностей [25, 26].  [c.157]

Из теоретических предпосылок А. И. Петрусевича известно, что в процессе работы зубчатых колес на поверхностях зубьев возникают силы трения, изменяющие напряженное состояние в зоне контакта и увеличивающие максимальное контактное напряжение сдвига.  [c.301]

Следует иметь в виду, что не только вибрация, но и направление динамических воздействий оказывает существенное влияние на трение и износ. Так, деформация одинаковых материалов при наличии тангенциальной вибрации в несколько раз выше, чем при нормальной вибрации. Причиной этого является изменение напряженного состояния в зоне контакта в условиях нормальных вибраций процесс накопления контактных деформаций ограничивается ползучестью при действии вибрации тангенциального направления происходит пере-деформирование (циклическое оттеснение) поверхностных слоев материала. В зависимости от материалов используемой фрикционной пары, амплитуды и продолжительности воздействия вибрации коэффициент трения в динамическом режиме по сравнению со статическим может изменяться в 1,5...2 раза. Изменение контактных деформаций при динамическом нагружении ведет к увеличению объема поверхностного слоя, активизированного упругопластическим деформированием. Расширение активационного объема распространения упругопластической деформации вызывает, в свою очередь, повышение интенсивности окислительного износа и схватывания, которые могут возрасти на порядок по сравнению с имющими место в статических условиях.  [c.501]

При работе зубчатых колёс на поверхностях зубьев возникают силы трения, которые изменяют напряжённое состояние в зоне контакта и увеличивают максимальное контактное напряжение сдвига. Если принять коэфициент трения равным 0,2 и неизменным по ширине полоски контакта, то максимальное контактное напряжение сдвига получит значение 0,34j на глубине 0,4 1 [15, 26]. Это напряжение почти не отличается от максимального контактного напряжения сдвига при г араболическом законе распределения нагрузки поперёк полоски контакта (при вышеуказанной её ширине), принятого здесь в качестве условного расчётного  [c.244]

Усталостяое изнашивание появляется в результате повторного деформирования поверхностных слоев твердых тел при внешнем трении наиболее характерно для нормального режима работы подавляющего большинства подвижных сопряжений [70, 175]. Изнашивание твердых тел принято оценивать, используя линейную интенсивность изнашивания. На интенсивность усталостного изнашивания существенно влияет напряженное состояние в зонах фактического касания твердых тел. В зависимости от напряженного состояния в зоне касания различают усталостное изнашк-вание прн упругом и пластическом контактах.  [c.35]


Уменьшение осевого усилия объясняется нарушением фрикционных связей, возникающих между контактирующими поверхностями штока и набивки при затяжке сальника. Чем больше усилие затяжки, тем больше фактическая площадь контакта и боковое давление, а следовательно, число и прочность фрикционньж связей. При разрушении фрикционных связей в зоне контакта, вызванном перемещением штока, имеющиеся незначительные пустоты тотчас же заполняются материалом набивки, находящейся в напряженном состоянии. Вследствие этого напряжение в набивке уменьшается, а следовательно, уменьшается и величина осевой и боковой сил, а также силы трения, действующих в сальнике. При этом снижается и герметичность сальника. Поэтому, например, для создания  [c.42]

Микротрещины, предшествующие выкрашиванию частиц металла, являются результатом неравномерного внутреннего напряженного состояния в микро- и макрообъемах материала зубьев, возникающего под действием повторных нагружений и резкого местного повышения температуры в зоне контакта. При напряжениях, лишь ненамного превышающих длитель ный предел выносливости материала, микротрещины возникают в поверхностном слое толщиной 15—25 мк. С увеличением напряжений микротрещины появляются как на поверхности, так и на определенной глубине под поверхностью. В ходе развития поверхностные и глубинные микротрещины между собой соединяются. Наконец, при очень больших напряжениях, вследствие упрочнения поверхностного слоя металла, усталостные процессы превалируют в глубинных микрообъемах металла и микротрещины развиваются из глубины к поверхности. Ориентация поверхностных микротрещин под острым углом к поверхности (рис. 69) объясняется пластическим течением поверхностного слоя металла в направлении действия сил трения.  [c.81]

В ходе этого сложного явления имеют Mt TD, механические, теплофизнческие, физико-химнческие и электромеханические процессы, которые порождают различные формы проявления (виды) изнашивания деталей. Пря всей с.чожности явления трения ведушим процессом в нем, как правило, оказывается деформирование >1 разрушение при сложном напряженном состоянии частиц материала в зонах контакта.  [c.111]

В состоянии покоя указанная деформация вызывается силой yVij. Для осуществления качения к колесу нужно приложить движущую силу Р, работа которой затрачивается на деформацию и трение скольжения в непрерывно вступающих в контакт новых поверхностных слоях колеса и плоскости. Так как при качении колеса вправо упругие деформации колеса и плоскости на участке СА исчезают не мгновенно (вследствие внутреннего трения между частицами материала), то давление на участке СА оказывается меньше, чем на участке AD, и реакция N21 (равнодействующая давления плоскости на колесо) смещается от точки А в сторону качения на расстояние к, т. е. в точку В. При качении колеса впереди его на участке AD образуется как бы волнооб-, разный подъем, через который колесу непрерывно надо перекаты- ваться. Переменное напряженное состояние, перемещающееся вместе с зоной контакта, вызывает в колесе и в плоскости колебания, затухающие вследствие внутреннего трения.  [c.87]

При незначительном трении, имеющем место в рассматриваемых резьбовых соединениях (высокое качество поверхности, наличие смазки), радиальные деформации не оказывают существенного влияния на напряженное состояние соединения кроме того, отметим, что обусловленные радиальными деформациями напряжения самоуравновешиваются на поверхности зубьев в зоне их контакта и, следовательно, имеют локальный характер. Поэтому имеющиеся отклонения величин замороженных в заготовках разностей радиальных деформаций от требуемых приводят к незначительной погрешности моделирования.  [c.101]

Установлено, что напряженно-деформируемое состояние при статическом контакте и трении движения резко различается. Показано, что деформация при внещнем трении происходит путем растяжения и сжатия и выявлены ее особенности в зоне непосредственного контакта и в зонах влияния 151 ].  [c.82]

При уплотнении материала вибрированием масса вибратора приводится в состояние колебательных движений. Вслед за вибратором за счет его кинетической энергии вводятся в состояние колебательных движений и расположенные в зоне его действия частицы уплотняемого материала, поэтому они оказываются под воздействием инерционных сил. Величина этих сил пропорциональна массам частиц. Так как последние не одинаковы, то за счет разности в силах инерции в местах контактов частиц возникают напряжения. До известных пределов эти напряжения будут уравновешиваться силами сцепления и внутреннего трения материала, а в грунтах — и прочностью связующих пленок. После превышения этих пределов возникнут взаимоперемещения частиц. Те силы, с которыми частицы отрываются друг от друга, пропорциональны инерционным силам, поэтому они определяются не только разностью масс соседних частиц, но также и теми ускорениями, которые развиваются при колебательных движениях. Таким образом, относительное перемещение частиц наступит тем скорее, чем больше будет разница в массах отдельных частиц, составляющих материал, и чем слабее будут силы связей между частицами. Поэтому вибрирование применимо к уплотнению материалов, состоящих из частиц разных размеров со слабыми связями между ними. К таким материалам относятся несвязные и малосвязные грунты и бетонные смеси. Последние особенно хорошо уплотняются вибрированием, так как обладают ярко выраженными тиксотропными свойствами, в результате чего при встряхивании они приобретают свойства жидкости.  [c.247]


Смотреть страницы где упоминается термин Напряженное состояние в зоне контакта трения : [c.149]    [c.93]    [c.65]    [c.65]    [c.253]    [c.313]    [c.106]    [c.121]    [c.223]    [c.45]    [c.94]    [c.196]    [c.53]    [c.107]   
Узлы трения машин (1984) -- [ c.133 ]



ПОИСК



Зона контакта

Контакт Напряженное состояние

Контакты

Состояния зонные



© 2025 Mash-xxl.info Реклама на сайте