Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление ударной волны

Требование безударности течения ( ф) = (ро Ф) во многих случаях не является необходимым и может быть снято. Устранение ограничения, вообще говоря, может улучшить решение задачи, то есть в задаче на минимум может снизить возможный минимум. В задаче об оптимальной форме контура тела переход от требования <р ф) = <ро ф) к более слабому ограничению (р ф) <Ро(Ф) дает надежду на отыскание тел с меньшим волновым сопротивлением. Если решение приведет к неравенству (р ф) > <ро ф) хотя бы на части характеристики Ьс, то это будет означать, что в треугольнике ab появляются ударные волны.  [c.88]


При получении решения (3.12)-(3.15) было сделано допущение, что функции а, 1 , р непрерывны в точке к. Покажем, что это допущение несущественно. Пусть (рис. 3.15) в точку к приходит ударная волна дк. Тогда в ту же точку приходит и некоторая характеристика первого семейства кк, лежащая ниже по течению от ударной волны. В этом случае отрезок кЬ контура аЬ должен обладать минимальным сопротивлением, а в точке к должно выполняться условие (3.11), записанное для величин ун, <Рм,  [c.92]

Выясним, не являются ли рещения без ударных волн в некоторой области изменения переменных наилучшими в той смысле, что допустимыми изменениями энтропии на экстремали нельзя уменьшить сопротивление.  [c.93]

В разделах 3.2 и 3.3 были рассмотрены необходимые условия экстремума величины волнового сопротивления в тех случаях, когда исходная характеристика не разрушается. Определены области, в которых течения с ударными волнами не допустимы. В задачах этого типа полезно дополнительно исследовать необходимое условие минимума волнового сопротивления. Следующий раздел будет посвящен этому вопросу.  [c.107]

Может оказаться, что при некоторых исходных данных вариационная задача имеет два решения, например, разрывное безударное и разрывное решение с ударными волнами, Предпочтение, конечно, следует отдать тому из этих двух относительных минимумов, который дает меньшую величину волнового сопротивления.  [c.127]

Примеры расчетов по уравнениям (7.9), (7.10) здесь приведены при X = 1,4 в плоскопараллельном и осесимметричном случаях. При всех значениях Шоо из сверхзвукового интервала и при всех значениях величины Ь = Х/ из интервала 0 Г < оо условия (7.8) и (7.19) выполняются. Отсюда следует, что, по крайней мере, при к = 1,4 наибольшее сопротивление осуществляется при воздействии на тело газа, не прошедшего через ударные волны.  [c.173]

Отметим, что, например, при числе Маха набегающего потока М = 4 максимальное сопротивление тела вращения может в два раза превышать сопротивление полубесконечного цилиндра с плоским головным срезом в случае осевой симметрии. Для проведения этого сравнения был использован расчет осесимметричного течения с отошедшей ударной волной, приведенный Белоцерковским в [38].  [c.173]

Подчеркнем здесь следующее обстоятельство. Наличие ударных волн приводит к возрастанию энтропии при таких движениях, которые можно рассматривать во всем пространстве как движение идеальной жидкости, не обладающей вязкостью и теплопроводностью. Возрастание энтропии означает необратимость движения, т. е. наличие диссипации энергии. Таким образом, разрывы представляют собой механизм, который приводит к диссипации энергии при движении идеальной жидкости. В связи с этим для движения тел в идеальной жидкости, сопровождающегося возникновением ударных волн, не имеет места парадокс Даламбера ( 11)—при таком движении тело испытывает силу сопротивления.  [c.459]


Углекислоты значения при ожижении воздуха 31 Углерод 347 Углерода окись 44 Ударные волны второго звука 853 Удельное сопротивление уравнение 196 Уитстона мост 17  [c.932]

На создание ударной волны расходуется часть энергии движущегося тела. Этот новый вид сопротивления среды, которое возникает при быстром движении тел, называется волновым сопротивлением. При скоростях, превышающих скорость звука, этот вид сопротивления имеет решающее значение. Величина волнового сопротивления зависит от формы не задней (как в случае обтекания), а передней части тела. Для ослабления возникающей ударной волны, а значит и волнового сопротивления, передняя часть тела (у которой возникает ударная волна) должна быть заострена. Например, у самолетов, летающих со сверхзвуковыми скоростями, передняя кромка крыльев делается гораздо более тонкой, чем у самолетов, скорости которых меньше скорости звука.  [c.585]

Волновое сопротивление (см. 53), возникающее при движении в среде тел со сверхзвуковой скоростью, связано с возбуждением в ней ударных волн и в основном определяется формой передней части тела. Форма задней части тела играет значительно меньшую роль, чем в случае обтекания его при дозвуковых скоростях. Для уменьшения волнового сопротивления самолетов, летающих со сверхзвуковой скоростью, применяют крылья стреловидной или  [c.241]

В случае полета тела со сверхзвуковой скоростью Wa> ао) перед ним возникает ударная волна (скачок уплотнения), вызывающая значительное сопротивление.  [c.114]

Если рассматриваемое тело представляет собой летательный аппарат, снабженный воздушно-реактивным двигателем, то в сверхзвуковой струе воздуха, которая тормозится при втекании в двигатель, также происходит скачок уплотнения. Принципиально можно представить себе и плавный переход сверхзвукового потока в дозвуковой, осуществляемый посредством специального обратного сопла, установленного на входе в двигатель. При этом не было бы потерь полного давления. Однако торможение сверхзвукового потока таким способом осуществить в полной мере не удается, в силу чего приходится мириться с существованием ударных волн и наличием соответствующего волнового сопротивления.  [c.114]

При Ми < 1 дополнительное сопротивление исчезает в связи с отсутствием ударных волн.  [c.484]

В баллистических экспериментах, выполненных в 50-е. гг., было обнаружено, что при движении моделей во фреонах в определенных условиях фронт головной ударной волны перестает быть гладким. На фронте головной ударной волны возникают многочисленные тройные конфигурации (пересечения в одной точке трех ударных волн). Картина течения становится такой же, как и за плоской ударной волной при наличии поперечных возмущений. В ряде случаев фронт волны остается гладким, а за ним возникает турбулентное течение. Сопротивление моделей существенно меняется. В дальнейшем были выполнены опыты в ударной трубе с инертными газами (аргон, криптон, ксенон) и с молекулярными (углекислый газ). Выяснилось, что распространение сильных ударных волн (при скорости несколько километров в секунду) имеет ряд особенностей. Фронт волны перестает быть плоским, в ряде случаев фронт разрушается, распределение плотности и концентрации электронов в релаксационной зоне имеет немонотонный характер (рис. 4.1, 4.2). Все эти особенности обнаруживают пороговый характер по скорости волны и начальному давлению. Малые примеси водорода (порядка 1%) оказывают стабилизирующее воздействие на течение. Описанное явление получило название релаксационной неустойчивости ударных волн. Существенную роль при этом, по-видимому, играет интенсивный переход энергии возбуждения в кинетическую.  [c.81]

Если в сверхзвуковом диффузоре косые скачки приходят в точности на кромку обечайки (рис. 47, а), то ф = 1. Если полностью закрыть канал, то весь поток пойдет вне диффузора и ф = 0. На практике может оказаться, что на некоторых режимах работы самое узкое сечение — горло диффузора не пропускает всего расхода, который может войти в диффузор, тогда о < ф 1. При этом линии тока крайних струек газа, идущих в диффузор, разворачиваются и проходят вне диффузора. Косые скачки могут проходить или пересекаться перед обечайкой, тогда у обечайки образуется ударная волна (рис. 47, б). Все это приводит к возникновению дополнительного внешнего сопротивления диффузора. Если это сопротивление велико и его необходимо избежать, то применяют регулируемые диффузоры, в которых можно изменять площадь горла, например, изменением положения конуса внутреннего тела относительно обечайки или другими путями.  [c.98]


С другой стороны, известно, что в действительности при практически установившихся движениях сопротивление тел, движущихся в различных средах, отлично от нуля. Все схемы движения вязких или идеальных жидкостей или газов (в том числе и с ударными волнами), при которых получается сопротивление, связаны с тем, что бесконечная масса ншдкости, занимающая все пространство вне тела, имеет бесконечное количество движения не только для относительного, но и для абсолютного поля скоростей.  [c.207]

При получении композиционных материалов на песчаном грунте листы часто имеют коробление и шероховатую поверхность. При деформировании композиционного листа на таком основании из-за значительного прогиба в материале появляются большие касательные напряжения вследствие относительного сдвига металла матрицы и волокна, обладающих разными пластичными характеристиками. Величина этих напряжений может превышать прочность связи волокна с матрицей, что иногда приводит к образованию непроваров, снижающих прочность композиции. Однако металлическая плита в качестве основания имеет и свои недостатки, так как в этом случае отраженная волна, интенсивность которой составляет более 20% интенсивности падающей ударной волны, создает на границах раздела между слоями матрицы значительные растягивающие напряжения. Это может приводить к образованию локальных дефектов, также снижающих прочность композиции. Более благоприятные условия сварки, обеспечивающие высокую прочность соединения, создаются при использовании в качестве основания плиты из материала, имеющего достаточно высокую жесткость в сочетании со сравнительно низким акустическим сопротивлением.  [c.161]

Когда кривая сГг(ег) всюду выпуклая к оси Ъг, как в идеальной жидкости без фазовых переходов, ударный фронт всегда устойчив и включает всю фазу сжатия в ударной волне. Наличие на кривой сжатия выпуклого к оси Ог участка (области перегиба) нарушает устойчивость ударной волны. Вследствие этого переход от упругого к упруго-пластическому деформированию материала, нарушающий условие устойчивости ударной волны, приводит к разделению фронта волны на упругий предвестник и следующую за ним ударную пластическую волну, распространяющиеся со скоростями соответственно ао н D. При низкой интенсивности ударной волны сопротивление сдвигу оказывает существенное влияние на ее распространение и, следовательно, при выполнении расчетов необходим учет вязкопластического поведения материала при деформации в ударной волне. Пренебрежение эффектами, связанными со сдвиговой прочностью, может привести к значительности погрешности в расчетах [161, 245].  [c.163]

Сопротивление материала пластической деформации при воздействии ударной волны определяется совместным действием процессов упрочнения и релаксации напряжений. Скорость деформации, упрочнение, величина среднего гидростатического давления и другие особенности деформирования материала оказывают влияние на реализуемый при прохождении волны закон деформирования и соответствующую ему кривую деформирования о(8). Эта кривая определяет скорость распространения ударной волны в соответствии с реальными потерями энергии на пластическое течение материала по выражению (4.25).  [c.166]

Изменение разности потенциалов на электродах датчика при сжатии ударной волной через катодный повторитель поступало на вход усилителя осциллографа 0К-17М. Катодный повторитель располагался в непосредственной близости к копру и соединялся с датчиками кабелем РК 75 длиной не более 1,5 м. Выход катодного повторителя согласован с волновым сопротивлением кабеля, и волновые процессы в последнем не искажали сигнал с датчика (кабель РК 75, соединяющий катодный повторитель и осциллограф, имел длину 10 м).  [c.182]

В соответствии с предварительным анализом электрический сигнал, вызванный сжатием диэлектрика при прохождении волны нагрузки, характеризует импульс нагрузки при соединении плоского конденсатора с поляризованным диэлектрическим слоем с измерительной аппаратурой по схеме с короткозамкнутыми электродами, представленной на рис. 85 (постоянная времени R значительно меньше времени регистрации). При таком соединении разность потенциалов на электродах датчика остается постоянной в процессе сжатия диэлектрика ударной волной, а величина сигнала, снимаемого с сопротивления нагрузки, определяется током подзарядки датчика, зависящим от параметров волны нагрузки.  [c.186]

В теплоэнергетике, использующей как ядерное, так и обычное углеводородное топливо, одной из важнейших является проблема отвода огромного количества тепла с теплоотдающих поверхностей. Наиболее распространенным и используемым для этих целей теплоносителей являются парожидкостные смеси. Поэтому исследователями большое внимание уделяется течению парожидкостных смесей при наличии фазовых переходов в каналах с обогреваемыми и необогреваемыми стенками. Видимо на эту тему появляется наибольшее число публикаций в области неоднофазных течений. Здесь особый интерес представляют исследования структуры потока при различных режимах, кризисов теплообмена, обусловленных нарушением контакта жидкой фазы с теплоотдающей поверхностью, гидравлического сопротивления и т. д. Проблемы безопасности реакторного узла или устройств аналогичного типа привели к необходимости изучения истечений наро-жидкостных смесей из сосудов высокого давления, распространения возмущений и ударных волн в двухфазных парожидкостных потоках. Здесь же отметим течение влажного пара (смесь пара с каплями воды) в проточных частях турбомашин.  [c.10]


Характер перехода запыленного газа через фронт ударной волны представляет интерес для определения потерь при перерас-ширении продуктов сгорания, содержащих твердые частицы, в сопле, определения силы атомного взрыва и с точки зрения возможности определения коэффициента сопротивления частиц пыли (разд. 2.1). Соответствующие исследования проведены  [c.336]

Параллельно с исследованием безударных решений велось изучение задач о построении оптимальных профилей и тел вращения, вызывающих появление головных ударных волн. Черный [23] исследовал малые вариации течений около клина. Это позволило вьщелить те случаи, когда прямолинейная образующая обеспечивает минимальное сопротивление профиля с фиксированными концевыми точками. В работах [24, 17] найден класс решений задачи о наилучшей форме тел вращения с протоком, обтекаемых с головной ударной волной. Гудерлей и Эрмитейдж [25] получили тот же класс решений.  [c.47]

Волновое сопротивление тела в стационарном сверхзвуковом потоке газа равно нулю, если это тело не вызывает появления ударных волн, а обтекание его является безотрывным. Примером служит биплан Бузема-на. Простое исследование, не учитывающее детальной структуры потока, позволяет найти другую, верхнюю, границу волнового сопротивления при заданных габаритах тела.  [c.167]

Пусть головная часть тела, поверхность которого может пропускать газ, ограничена прямоугольником 0<х<Х,0 у К, гдеЛГ,К — заданные числа. Выберем контрольный контур следующим образом. Обозначим через ta линию Маха равномерного набегающего потока, приходящую в некоторую точку а. Если схема тела отвечает рис. 3.48, то точкой а является передняя точка заостренного профиля. Из нее могут исходить присоединенные ударные волны. Если тело вызывает отошедшую ударную волну, то в качестве точки а выбирается точка на пересечении ударной волны и линии тока, отделяющей массу газа, которая попадает вег внутренние полости тела. Остальную часть контура, которая может пропускать газ, обозначим через ah. Вместо линии ta может быть взята линия за. Контур sah замыкается осью симметрии и образующей поверхности тела hd. Если окажется, что для получения максимального сопротивления на тело должен воздействовать газ, не прошедший через ударную волну, то результаты решения вариационной задачи позволят сделать дальнейшие выводы об оценке величины сопротивления.  [c.168]

Форма, которой должно обладать тело для того, чтобы при сверхзвуковом движении быть хорошо обтекаемым, т. е. испытывать по взможностн малую силу сопротивления, существенно отличается от соответствующей формы для дозвукового движения. Напомним, что в дозвуковом случае хорошо обтекаемыми являются продолговатые тела, закругленные спереди и заостренные сзади. При сверхзвуковом же обтекании такого тела перед ним появилась бы сильная ударная волна, что привело бы к сильному возрастанию сопротивления. Поэтому в сверхзвуковом случае хорошо обтекаемое удлиненное тело должно иметь заострен-  [c.642]

При стационарном сверхзвуковом обтекании тела такой формы скорость газа даже вблизи тела будет везде лишь незначительно отличаться по величине и направлению от скорости натекающего потока, а образующиеся ударные волны будут обладать малой интенсивностью (интенсивность головной волны убывает вместе с уменьшением раствора обтекаемого угла). Вдали от тела движение газа будет представлять собой расходящиеся звуковые волны. Основную часть сопротивления газа можно представлять себе как обусловленную переходом кинетической энергии движущегося тела в энергию излучаемых им звуковых волн. Это сопротивление, специфическое для сверхзвукового движения, называют волновым )-, оно может быть вычислено в общем виде при любой форме сечения тела (Th. Кагтап, N. В. Moore, 1932).  [c.643]

Нужно отметить, что истинное давление, которое получается при торможении струи газа, может существенно отличаться от полного давления, определенного но формуле (68). Объясняется это тем, что в действительности торможение струи часто протекает не по идеальной адиабате, а с более или менее существенными гидравлическими потерями. Например, в диффузоре при дозвуковом течении газа уменьшение скорости обычно сопровождается вихреобразованиями, вносящими значительные сопротивления в газовый поток. При торможении сверхзвукового потока почти всегда образуются ударные волны, дающие специфическое волновое сопротивление. Итак, действительное давление в за-торможенно11 струе газа обычно ниже полного давления набегающей струи.  [c.32]

При гиперзвуковом обтекании тонкого тела с затупленной носовой частью образуется отошедшая ударная волна, в передней части которой давление возрастает настолько сильно, что даже при малых размерах затупления аэродинамическое сопротивление может сугцественно увеличиться. Мимо этого факта нельзя пройти в связи с тем, что реальные тела (крылья, фюзеляжи, корпуса ракет) всегда бывают затуплены. Осухцествить полет идеально заостренного тела нельзя хотя бы потому, что при больших скоростях полета нагревание воздуха около носовой  [c.124]

При больших числах Маха (0,7 и б мее) сопротивление резко возрастает из-за образования ударных волн их в/ияние можно уменьшить, если заострить носовую часть тела. В частности, la рис. XIV.8 видно, что наименьший коэффициент сопротивления имеют снарэды с наиболее остры,ми очертаниями носовой части.  [c.234]

Явление гидравлического удара носит периодический характер. Действительно, после достижения резервуара ударная волна отразится и со скоростью с будет распространяться к задвижке. Общее время пробега прямой и отраженной (обратной) ударных волн составляет длительность фазы гидравлического удара Тф=211с. Далее циклы пов ышений и понижений давления будут чередоваться с промежу ками времени Тф до тех пор, пока под влиянием гидравлических сопротивлений этот колебательный процесс не затухнет.  [c.264]

Условие (12.2.18) следует из того, что на расстоянии х = д кр наклоны прямой О А и кривой sin(w/iy) в точке н = 0 становятся одинаковыми. Если формально продолжать построение для х> л кр, то и оказывается неоднозначной функцией времени, что физически абсурдно. На самом деле, волна в точке разрыва х = имеет скачок напряжения, т. е. является ударной волной. Этот разрыв с определенной скоростью распространяется вдоль системы. Постепенно ударная волна принимает треугольную форму, однако ее амплитуда убывает по мере увеличения х. Искажение формы волны связано с перекачкой энергии из колебания с основной частотой в гармоники. Можно показать, что в начале образуется вторая гармоника, а затем в результате нелинейного взаимодействия появляются волны комбинационных частот. Необходимо отметить, что любая волна независимо от формы, которую она имеет в начале линии х = 0), на определенном расстоянии принимает треугольную форму. Затухание ударной волны можно объяснить, если предположить, что последовательно с нелинейной емкостью имеется погонное сопротивление г. Затухание каждого из бесконечного числа компонент ударной волны в этом случае будет определяться выражением ехр ( — блшл ). Отсюда следует, что при г-)-О (б- О) для компонент высоких частот (п- -со) будет характерно конечное затухание, что и приводит к убыли амплитуды ударной волны на расстояниях х>х р. Основная диссипация энергии происходит в области разрыва, причем наличие активного сопротивления г ограничивает крутизну переднего фронта ударной волны. Крутизна изменения напряжения вблизи х = Хкр тем меньше, чем больше т.  [c.379]


Помимо измерения кинематических параметров, к настоящему времени отработана манганиновая методика непосредственного измерения давления в конденсированных телах, сжатых сильными ударными волнами, основанная на иснользованпн манганиновых датчиков, в которых чувствительный элемент из особого манганпнового сплава меняет электрическое сопротивление R под действием давления. Датчик с изоляцией помещается внутри исследуемого образца, и при ударе измеряется изменение электрического тока I t) в датчике при фиксированном папряженип F, что позволяет определить R t). а затем, зная зависимость R p), можно восстановить и p t). Этот метод хорошо работает в металлах до давления 15 ГПа, а при давлениях выше 35 ГПа становится непригодным из-за разрушения изоляции датчика. Ниже  [c.247]

Сжатие порошка сильной ударной волной можно описать идеализированной схемой (Я. Б. Зельдович, Ю. П. Райзер, 1966), проиллюстрированной на рис. 3.1.5. Согласно этой схеме порошок сжимается до плотности сплошной фазы, не оказывая сопротивления, вдоль линии О О (р 0), а затем вещество сжимается согласно уравнению состояния сплошного вещества, когда давление холодного сжатия изменяется вдоль линии Pp V). Фактически это соответствует тому, что давление холодного сжатия лмеет точку излома О при F = У°лг 1/Рю-17  [c.259]

ОТ размера частиц а (рис. 4,8.8,а), коэффициент сопротивления, отнесенный ко всему потоку, меняется слабо, и это изменение заметно лишь при а > л 200 мк когда реализуется вылет частиц за ударную волну. Прп этом зависимость i от а прп наличии отраженных частиц имеет немопотопный характер. При росте а до размера происходит разрушение удар-  [c.398]

На рис. 1.12 приведена осциллограмма электропроводности железа при ударном нагружении с амплитудой 175 кбар. Начальное, положительное относител ьно нулевой линии, смещение луча соответствует сопротивлению железа в невозмущенном состоянии. Под воздействием упругой волны (83 кбар) сопротивление становится отрицательным. После прихода ударной волны (175 кбар) амплитуда сопротивления резко увеличивается, оставаясь отрицательной.  [c.41]

Приведенные экспериментальные данные, полученные по результатам квазистатических испытаний с высокими скоростями, по амплитуде упругого предвестника и скоростной зависимости откольной прочности металлов близки к значениям вязкости, определенным из анализа закономерностей распространения малых возмущений па фронте ударных волн [92, 242, 172, 173, 234]. Однако они значительно ниже значений, полученных в работе [101] в результате анализа смещения слоев металла при соударении плит под углом. В последнем случае для определения коэффициента вязкости использована параболическая зависимость продольного смещения слоя от его глубины, справедливая только для глубины больше 61 (61 — толщина более тонкой пластины). На этой глубине скорость деформации значительно ниже, чем вблизи точки соударения, что может повлиять на величину коэффициента вязкости. В табл. 4 приведены коэффициенты вязкости для некоторых металлов, определенные различными методами по результатам обработки скоростной зависимости сопротивления деформации, скоростной зависимости откольной прочности, затуханию упругого предвестника, результатам изучения закономерностей распространения малых возмущений на фронте ударной волны и из анализа процесса ква-зиустановившегося течения материала в области контакта пластин, соударяющихся под углом.  [c.135]

На основании изложенного можно сделать вывод, что изменение сопротивления материала пластическому деформированию существенно влияет на скорость распространения пластической ударной волны в области малых упруго-пластических деформаций. Скорость ударной волны равна гидродинамической только в частном случае идеальной упруго-пластической среды с нулевым упрочнением либо среды с постоянным уровнем средних напряжений аср = роепл/е в процессе деформации по реализуемому при прохождении ударной волны законе деформации. В ударной волне реализуется наиболее высокая скорость деформации при данной интенсивности волны, сохраняющаяся при распространении волны. Влияние поведения материала под нагрузкой на распространение ударной волны подтверждается численными расчетами при использовапии различных реологических моделей материала [84].  [c.167]

В литературе имеются данные о применении для регистрации давления в ударных волнах эффектов, связанных с поляризацией под нагрузкой кварца, рубина и некоторых других материалов. Сигнал, снимаемый с малого сопротивления, которое соединяет электроды, прилегающие с двух сторон к пластине из пьезоэлектрического или диэлектрического материала при прохождении по его толщине ударной волны, соответствует форме последней при ее интенсивности, не вызывающей пластических деформаций [365, 366]. Использование таких датчиков ограничивается их высокой стоимостью. Попытки использовать для измерения давления процесс деполяризации сегнетокерами-ки при прохождении волны нагрузки не дали положительного результата [189, 371]. Исследования с ударным нагружением диэлектрического слоя обнаружили появление сигнала на электродах, прилегающих к поверхности диэлектрика (при соединении электродов малым сопротивлением), обусловленного ударной поляризацией [190, 311, 374], однако сложный характер явлений, связанных с ударной поляризацией и ее распадом, не позволяет просто связать величину сигнала с параметрами нагрузки.  [c.169]

Косвенный метод определения сопротивления сдвигу за фронтом ударных волн не обеспечивает достаточной достоверности результатов. Последнее связано с отсутствием данных об изменении характеристик упругости материала в зависимости от величины давления, недостаточным объемом данных для построения изентропы разгрузки в области упруго-пластического поведения материала и использованием приближенного уравнения состояния для расчета процесса пластического течения, не учитывающего сложного реологического поведения материала под нагрузкой. В частности, о значительном отклонении принятой для расчета модели материала от его реального поведения  [c.201]


Смотреть страницы где упоминается термин Сопротивление ударной волны : [c.44]    [c.47]    [c.158]    [c.168]    [c.708]    [c.472]    [c.58]    [c.397]   
Гидравлика, водоснабжение и канализация Издание 3 (1980) -- [ c.65 ]



ПОИСК



Волны ударные



© 2025 Mash-xxl.info Реклама на сайте