Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Струя торможение

Таким образом, резонансная гипотеза удовлетворительно объясняет ход частотных характеристик излучателя, а также срывы генерации и отклонения от линейного изменения частоты на краях рабочего диапазона. Однако механизм звукообразования пока остается невыясненным. Предположительная картина возникновения звуковых колебаний, основанная на анализе ряда работ зарубежных авторов, а также проведенных нами скоростных киносъемок осцилляции струи (частота излучения 1,1 кгц, частота съемки до 10 тыс. кадров в секунду) и мгновенных теневых ее фотографий, сводится к следующему. Зарождение случайных колебаний в стационарном скачке, возникшем при торможении сверхзвуковой струи (торможение препятствием в виде резонатора), приводит к появлению в пространстве между этим скачком и донышком резонатора слабых пульсаций. Если рассматривать резонатор и часть струи до скачка уплотнения как некоторую резонансную трубу с одной жесткой и одной мягкой границами, то можно предположить, что возмущения, соответствующие собственной частоте такой четвертьволновой трубы, будут со временем усиливаться вплоть до появления нелинейных колебаний и ударных волн умеренной интенсивности. Эксперименты на трубах с двумя жесткими стенками [74, 75] показали, что возникновение разрывов (при возбуждении колебаний поршнем) наблюдается уже через 8—10 циклов. В трубе с одним открытым концом, возбуждаемой сверхзвуковой струей, переходный процесс составляет всего 3—4 цикла [39]. Теоретически нарастание колебаний в закрытой трубе рассмотрено в работах [75, 76] для открытой трубы со струйным возбуждением такие исследования, по-видимому, не проводились, хотя в работе [39] приводятся некоторые ориентировочные расчеты.  [c.87]


Подсос окружающего воздуха свободными и пристеночными турбулентными струями, торможение фонтанного потока на поверхностях самолета, подогрев воздуха, поступающего в двигатели, вызывают изменение вертикальной тяги силовой установки или, как принято говорить, результирующей нормальной силы (результирующей подъемной силы).  [c.227]

Допустим, что скорость одной из двух струек перед решеткой равна нулю — случай полной неравномерности, имеющей место при набегании на решетку узкой струи (рис. 3.4). Все описанное справедливо и для этого случая вследствие торможения при набегании на решетку узкая струя будет растекаться по ней в поперечном направлении растекание будет продолжаться и после протекания жидкости через отверстия плоской решетки в виде отдельных струек. Однако по мере увеличения коэффициента сопротивления решетки поперечное (радиальное) растекание струек будет непрерывно расти, а следовательно, будет возрастать до бесконечности и степень растекания жидкости (расширения потока) за решеткой, так что скорость потока будет стремиться к нулю. При этом степень растекания  [c.80]

При этом рр > Ро, так как согласно уравнению Бернулли статическое давление возрастает при торможении потока, т. е, при уменьшении скорости, вызванном растеканием струи.  [c.106]

Задача Х1П—38. Для быстрого торможения тележки опытного стенда в канал с водой, расположенный под тележкой, опускается цилиндрический ковш, который отбрасывает струю воды в сторону движения тележки под углом а == 30° к горизонту (на схеме изображено относительное обтекание ковша)  [c.405]

Реактивная сила i всегда направлена навстречу скорости с поэтому, когда в ракетах струя газа выбрасывается против движения, реактивная сила является ускоряющей. Если струя газа в ракете направлена по движению, то реактивная сила замедляет скорость ракеты так может быть осуществлено реактивное торможение ракеты (например, при посадке ракеты на Землю или другое небесное тело). Наконец, если направление, в котором выбрасывается струя газов, образует некоторый угол со скоростью ракеты, то реактивная сила изменяет не только величину, но и направление скорости ракеты так может быть осуществлено управление направлением движения  [c.533]

При полном торможении струи в сечении 0-0 удельная энтальпия выражается формулой  [c.150]

Расчеты по этим формулам достаточно точны только для дозвукового потока. Объясняется это тем, что при торможении сверхзвукового потока перед насадком возникает ударная волна, пересекая которую газовые струи претерпевают значительные гидравлические потери. Поэтому давление в трубке J пневматического насадка при сверхзвуковом течении существенно отличается от полного давления набегающего потока, что делает формулы (68) и (72) в этом случае неприменимыми.  [c.33]


Если рассматриваемое тело представляет собой летательный аппарат, снабженный воздушно-реактивным двигателем, то в сверхзвуковой струе воздуха, которая тормозится при втекании в двигатель, также происходит скачок уплотнения. Принципиально можно представить себе и плавный переход сверхзвукового потока в дозвуковой, осуществляемый посредством специального обратного сопла, установленного на входе в двигатель. При этом не было бы потерь полного давления. Однако торможение сверхзвукового потока таким способом осуществить в полной мере не удается, в силу чего приходится мириться с существованием ударных волн и наличием соответствующего волнового сопротивления.  [c.114]

Следует отметить, что около критического сечения поток очень чувствителен к изменению поперечного сечения канала. Так, папример, для изменения числа М на 10 % (от М = 0,9 до М = 1) достаточно изменить площадь сечения на 1 %, а для перехода от М = 0,95 к М = 1 — на 0,25 %. По этой причине нельзя поддержать критический режим на достаточно протяженном участке прямой трубы (пограничный слой, образующийся за счет торможения газа у стенок, как бы сужает сечение струи).  [c.144]

При дальнейшем течении в любой струйке тока внутри изобарической сверхзвуковой струи происходит непрерывное торможение — с переходом через скорость звука — до малых скоростей, также за счет одностороннего внешнего воздействия — передачи количества движения во внешнюю среду.  [c.217]

Для сверхзвуковых струй под 0 понимается отношение температур торможения в начальном сечении струи и в окружающей среде.  [c.385]

Здесь поправка км. учитывает влияние скоростной сжимаемости (числа Маха) и тепловой сжимаемости (отношения температур торможения в струе и внешнем потоке Q = Tq/T ) на интенсивность смешения  [c.394]

При расчете местного значения температуры торможения но местному значению энтальпии или концентрации (для струй высокой температуры) следует учитывать зависимость теплоемкости  [c.397]

Условия нерасчетного истечения сверхзвуковой струи принято характеризовать степенью нерасчетности, представляющей собой отношение действительного давления торможения в ресивере к расчетному ), которое может быть приближенно заменено отношением давления на выходе из сопла к давлению в окружающей среде  [c.401]

Около оси струи 1на участке торможения криволинейный скачок переходит в прямой скачок уплотнения, получивший название диска Маха, за которым скорость течения становится дозвуковой. Периферийные линии тока образуют сверхзвуковое течение, которое, как следует из теоретических расчетов ) и экспериментов ), дважды пересекает криволинейный скачок 1 — l d и отраженный скачок d — п. Одна из линий тока 2—2) этой зоны течения изображена на рис. 7.31. Поверхность 1—1 (часть криволинейного скачка) представляет собой так называемый висячий скачок уплотнения, постепенно ослабляющийся с приближением к кромке сопла и полностью вырождающийся, немного не доходя до последней.  [c.411]

Та— температуры торможения наружной и внутренней струй. Горизонтальные участки кривых отвечают критическим режимам сопла.  [c.451]

Итак, в двигателе с простым диффузором торможение входящей струи при сверхзвуковой начальной скорости начинается с прямого скачка уплотнения. Потери в скачке и параметры потока за скачком определяются по формулам, приведенным в гл. III.  [c.463]

Если для случая дозвуковой скорости полета потери полного давления при торможении рабочей струи определялись только внутренним сопротивлением диффузора Од, то для случая сверхзвуковой скорости эти потери включают также волновое сопротивление Оп, т. е. определяются произведением коэффициентов сохранения полного давления в прямом скачке и в диффузоре (<1пО ).  [c.463]

Иначе говоря, угол поворота потока у плоского изоэнтропического центрального тела при торможении от значения числа Ма до М = 1 равен углу поворота в течении Прандтля — Майера с расширением от М = 1 до М = Мн(сйя = бн). Кривая о)(Мн) для к = = 1,4 приведена на рис. 8.43 (/га = < ). Если бы пучок характеристик изоэнтропического течения сжатия сходился на кромке обечайки диффузора, то струя, входящая в диффузор, не возмущала бы внешнего обтекания обечайки.  [c.473]


Приведенный в 3 метод расчета газового эжектора позволяет определить параметры эжектора — увеличителя тяги с учетом сжимаемости при больших отношениях давлений смешивающихся газов, больших скоростях и температурах в эжектирую-щей струе и тем самым уточнить полученные выше результаты. Расчет проводится для эжектора с заданными геометрическими размерами, т. е. параметрами а и /. Полное давление и температура эжектирующего газа р и Т для данного режима работы двигателя известны. Полное давление и температура торможения эжектируемого воздуха р и Т1 определяются по параметрам атмосферы Рв и и скорости полета с учетом потерь полного давления в воздухозаборнике. Далее, последовательно задаваясь различными значениями Я2, определяем параметры смеси газа и воздуха на выходе из диффузора. Реальным будет такой режим (такие значения коэффициента эжекции п и скорости истечения w ), при котором давление дозвукового потока в выходном сечении диффузора получается равным атмосферному давлению Ря.  [c.561]

Дадим прежде всего качественное описание структуры затопленной свободной, т. е. не стесненной стенками, турбулентной струи, вытекающей из плоского или круглого сопла (рис. 9.7). Если сопло надлежащим образом профилировано, то распределение скоростей в его выходном сечении будет равномерным. По мере продвижения струи происходит ее торможение окружающей жидкостью и наряду с этим вовлечение последней в движение. Поэтому на некотором расстоянии 1 поперечное сечение ядра течения с равномерным распределением скоростей уменьшается до нуля, а вокруг него образуется струйный пограничный слой, в котором скорость асимптотически изменяется от значения Ыд до нуля при удалении от оси струи. Участок длиной состоящий из ядра и струйного пограничного слоя, называют начальным участком свободной струи. За сечением х — лежит относительно небольшой переходный участок.  [c.378]

Рассмотрим, как вычисляются по найденным газодинамическим функциям абсолютные величины параметров, характеризующих течение в струе. Давление, температура и плотность торможения рассчитываем по формулам  [c.149]

Из (4.9.24) при л = - О и pj poj (давление на выходе из форсунки значительно меньше давления торможения в струе) получим зависимость  [c.346]

На рис. 5.1.5 и 5.1.6 приведены значения коэффициентов усиления Ку в зависимости от чисел Мао набегающего потока воздуха и отношения давления торможения в струе p j к статическому давлению в набегающем потоке роо- Эти данные получены в присутствии боковых пластин, препятствующих перетеканию воздуха и обеспечивающих двухмерный характер течения.  [c.356]

Анализ графиков на рис. 5.1.5 и 5.1.6 показывает, что для увеличения коэффициента усиления при заданном числе Мос и давлении р о воздушного потока необходимо уменьшать давление торможения в струе Роу. Это же достигается уменьшением ширины щели А и установкой пластинок по обе стороны щели параллельно воздушному потоку. При этом уменьшение Роу и А приводит к снижению Рр и не способствует достижению повышенных значений Кр. Действительно, из (5.1.4) и (5.1.5) видно, что увеличить Fp можно только с помощью 5щ при значительной длине  [c.357]

Можно представить себе следующую схему движения газа в какой-либо элементарной шаровой ячейке, т. е. в элементарном объеме, ограниченном сферическими поверхностями элементов. Максимальная скорость Vq жидкости в струйке возникает в наиболее узком сечении ячейки (просвете), относительная площадь минимального сечения обозначается п. Распространяясь в пространстве между щарами, струя расширяется, отрывается от сферических стенок и подмешивает к себе частицы относительно неподвижного газа, находящиеся в застойной зоне у поверхности шаров. Расширение основной струи происходит до встречи с последующим рядом шаров, отстоящим от предыдущего на величину высоты ячейки /г, после чего начинается сужение сечения и разгон струи. Присоединенные массы могут при этом частично отслаиваться от ядра струи и совершать возвратное движение к устью струи. Конечно, при своем движении через шаровые твэлы отдельные струи могут сливаться или, наоборот, дробиться на несколько отдельных струек, на можно себе всегда представить такую элементарную шаровую ячейку, где происходит именно такой процесс разгона и торможения элементарной струйки.  [c.40]

Интерес представляют не только прямо- и противо-точные потоки, но и перекрестные. Для теплообмена в плотном движущемся слое перекрестный и многоходовой ток газа может создать особые преимущества перед противотоком в связи с большой равномерностью распределения газового потока в слое. Очевидно, что могут быть получены и другие формы существования дисперсных потоков (здесь и в дальнейшем слово сквозных для краткости опускается). В противоточной газовзвеси, часто называемой по предложению 3. Ф. Чуханова падающим слоем , торможение падающих частиц создается встречным потоком газа (аэродинамическое торможение). В ряде случаев все большее значение приобретает противоточная газовзвесь с механическим торможением твердого компонента (с помощью сетчатых и тому подобных вставок). Увеличивающееся при этом время контакта компонентов потока (время теплообмена, химического реагирования и т. п.) позволяет при несколько усложненной конструкции увеличить компактность устройства. В отличие от механически торможенной газовзвеси пульсирующая газовзвесь, исследуемая в ИТиМО АН БССР, характеризуется периодически изменяемой скоростью несущей фазы. Весьма перспективен принцип встречных струй , предложенный и исследованный И. Т. Эльпериным Л. 212, 337, 338]. Повторяющееся столкновение двух прямоточных потоков газовзвеси позволяет резко увеличить местную относительную скорость, концентрацию и, как следствие, интенсифицировать теплообмен. Можно также указать на циклонные и др. потоки, формирующиеся под действием различных искусственно налагаемых полей (электромагнитных, ультразвуковых и др.). В дальнейшем криволинейные и усложненные различными дополнительными устройствами и силами дисперсные потоки, как правило, рассмат-  [c.14]


Она дает результаты максимально на 30% завышающие расчеты по (5-37). Данные по теплообмену во встречных струях [Л. 57, 212], а также данные по нротивоточ-ной торможенной газовзвеси, рассматриваемые в последующем разделе, подтверждают представления о снижении Nut с повышением концентрации сверх определенной величины. Следовательно, различные,данные, полученные при нисходящем и восходящем прямотоке, а также при противотоке, указывают на качественную спрдведливость предлагаемой закономерности независимость теплообмена от р в нестесненной области и снижение теплообмена при р>3,5 10 . Однако очевидна необходимость постановки специальных исследований по межкомпонентному теплообмену в диапазоне р = 170  [c.170]

Опыты проводились с дозвуковой струей аргона (степень чистоты 99,996%), нагретого в дуге при температурах торможения в ресивере, куда подавались нагретая дугой струя и твердые частицы, составляющей от 1000 до 3000° К. Когда твердые частицы не вводятся, расход газа-носителя (также аргона) поддерживается таким образом, что обпщй расход аргона 25,6 г мин сохраняется во всех опытах. Подводимая к дуге мощность составляет от 0,5  [c.457]

Рассмотрим случай идеального торможения газовой струи, т. е. определим давление ра = р, которое получится, если скорость течения иаоэнтронпческим путем уменьшится от W[ = w (при этом Pi = р, р = р) до W2 = 0. Уравнение Бернулли в этом случае дает  [c.31]

Нужно отметить, что истинное давление, которое получается при торможении струи газа, может существенно отличаться от полного давления, определенного но формуле (68). Объясняется это тем, что в действительности торможение струи часто протекает не по идеальной адиабате, а с более или менее существенными гидравлическими потерями. Например, в диффузоре при дозвуковом течении газа уменьшение скорости обычно сопровождается вихреобразованиями, вносящими значительные сопротивления в газовый поток. При торможении сверхзвукового потока почти всегда образуются ударные волны, дающие специфическое волновое сопротивление. Итак, действительное давление в за-торможенно11 струе газа обычно ниже полного давления набегающей струи.  [c.32]

На применении уравнения Бернулли основан пневматический способ определения скорости потока, который состоит в том, что в поток вводится насадок (рис. 1.5), состоящий из двух трубок. Открытое отверстие одной из этих трубок (i) размещается в носовой части насадка (перпендикулярно к потоку), а отверстия второй трубки (2) расположены в боковой поверхности насадка (вдоль потока) при дозвуковой скорости замедление струи газа от встречи с насадком проходит 6ei3 каких-либо потерь, так как трение и вихреобраэование возникают уже на боковой поверхности насадка, т. е. после того, как струя минует область своего полного торможения, размещающуюся перед самым носиком насадка. По этой причине в первой трубке создается давление, почти в точности равное полному давлению набегающего потока во второй трубке, если ее входное отверстие достаточно удалено от носика, устанавливается давление, близкое к статическому давлению потока. Трубки J и 2 сообщаются с манометром, измеряющим давление. Отношение измеренных давлений  [c.33]

Как известно (гл. V), при осреднении неравномерного потока в общем случае могут быть сохранены неизменными только три его суммарные характеристики. Однако для сверхзвукового потока с постоянной но сечению температурой торможения, каким является начальный участок нерасчетной струи идеального газа при отсутствии смешения, можно найти такие средние значения параметров в поперечном сечении, при переходе к которым од-еовременно с высокой степенью точности сохраняются значения расхода, полной энергии, импульса и энтропии при неизменной площади сечения. Эти средние значения параметров газа в поперечных сечениях начального участка струи и будем вводить в уравнения неразрывности, энергии, импульсов. Совместные решения этих уравнений поэтому будут также относиться к средним значениям параметров, а определяемая отсюда площадь сечения будет равна действительной площади соответствующих сечений струи. Почти все основные свойства потока при таком одномерном рассмотрении не изменяются и оцениваются правильно. Утрачивается лишь одно существенное свойство течения, а именно равенство статического давления на границах струи и во внешней среде поэтому приходится условно полагать, что в каждом поперечном сечении потока существует некоторое по-  [c.409]

Расчет большого класса задач гидроаэродинамики одномерных установившихся изэнтро-иических течений несжимаемой и сжимаемой жидкости основан на использовании уравнения Бернулли. Исследование течений сжимаемого газа имеет важное практическое значение, так как позволяет ввести ряд параметров, характеризующих движение газа (параметры торможения, критические параметры, максимальная скорость и др.), а также установить связь между различными параметрами течения и формой струи или канала. На основании уравнения Бернулли получен широкий набор газодинамических соотношений (функций), составляющих основной математический аппарат, используемый при расчетах изэнтропических течений газа.  [c.74]

Если л< 1 paскачков уплотнения (см. рис. 4.10, б) и давление в струе возрастает. Линии тока в этом случае сходятся к оси потока. На рис. 4.18, б это показано на примере пристеночной линии тока А В С .  [c.117]


Смотреть страницы где упоминается термин Струя торможение : [c.363]    [c.308]    [c.230]    [c.8]    [c.21]    [c.118]    [c.31]    [c.147]    [c.151]    [c.411]    [c.412]    [c.415]    [c.453]    [c.519]    [c.339]   
Физические основы ультразвуковой технологии (1970) -- [ c.2 , c.683 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

5.206— 211 — Торможени

Струя

Торможение



© 2025 Mash-xxl.info Реклама на сайте