Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали (см. Разрушение, материалы)

Стали (см. Разрушение, материалы) Стекло 381, 430  [c.676]

Результаты, полученные при исследовании влияния поверхностного пластического деформирования на возникновение и развитие усталостных трещин в сталях (см, гл. 6), также хорошо согласуются с приведенными теоретическими представлениями. Остаточные напряжения сжатия, образовавшиеся в результате наклепа в области вершины концентратора, приводят к резкому увеличению пределов выносливости по разрушению исследованных материалов, практически мало изменив при этом пределы выносливости по трещинообразованию. Если рассматривать эти остаточные напряжения как среднее напряжение цикла, то можно утверждать, что причиной образования широкой области нераспространяющихся трещин в этом случае было существенное изменение коэффициента асимметрии цикла от —1 до —ОО.  [c.55]


Все эти три типа разрушения проиллюстрированы испытанием на растяжение образца из малоуглеродистой стали (см. рис. 1.4). Окончательному разрушению предшествует развитие значительного пластического течения. Непосредственно перед тем, как прЬ исходит разрушение, в материале вблизи оси шейки возникают не только значительные растягивающие напряжения Oi, но также и несколько меньшие по величине радиальные сжимающие напряжения 02 = 0j. Поэтому максимальные касательные напряжения оказываются существенно более низкими по сравнению с максимальным растягивающим напряжением Oi, чем в случае одноосного растяжения, и благодаря прогрессирующему уменьшению площади поперечного сечения напряжение Oi в конце концов достигает значения, близкого к сопротивлению внутреннему разрыву при растяжении Тс, вблизи оси шейки возникает когезионное разрушение (т, е. внутренний разрыв при растяжении). На внешней поверхности шейки радиальное растяжение отсутствует, поэтому касательные напряжения имеют свое полное значение, в. отличие от случая одноосного растяжения. Следовательно, может произойти разрушение при сдвиге и, по крайней мере частично, из-за высокого значения растягивающего напряжения на поверх-3 .  [c.35]

Теория Сен-Венана удовлетворительно отражает наступление текучести и вязкое разрушение, главным образом в случае чистых металлов с простой атомно-кристаллической решеткой и мягких углеродистых сталей (см. п. 16). Для хрупких материалов эта теория представляется непригодной.  [c.32]

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, для испытания на сжатие используют короткие цилиндрические образцы, располагаемые между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 1.43. Здесь, как и у диаграммы растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 1.44). Довести образец пластичного материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск (см. рис. 1.44), и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может (см. табл. 1.1).  [c.87]


В результате сталь обезуглероживается. Образующийся метан располагается преимущественно по границам зерен. Он вызывает охрупчивание металла. При содержании водорода более 12 см на 100 г металла вместо типичного для пластичных материалов вязкого разрушения наблюдается хрупкое.  [c.182]

В табл. 8 приведено изменение пластичности оболочечных сталей, облученных в различных реакторах. Как видно из приведенных данных, при дозах облучения свыше 10 н/см аустенитные нержавеющие стали имеют практически хрупкое разрушение, что существенно снижает надежность изделий в эксплуатации. Поэтому в нашей стране и за рубежом проводится широкий комплекс исследований, посвященных изучению этого явления. Анализ литературных данных позволяет выделить в основном две точки зрения на механизм ВТРО конструкционных материалов 1) причиной ВТРО является гелий, образующийся при облучении в результате ядерных реакций [4, 6, 15, 26, 90, 911 2) отрицание существенной роли гелия в высокотемпературном радиационном охрупчивании 13].  [c.95]

Вязкость разрушения при плоской деформации для многих материалов также зависит от скорости нагружения. При ударном нагружении вязкость разрушения обычно называют динамической ударной вязкостью К, Для некоторых материалов, таких, например, как конструкционная сталь малой прочности, характерно непрерывное уменьшение вязкости разрушения с увеличением скорости нагружения [15] (см. рис. 15.24(a)). Хотя методы испытаний для определения значений Ки пока еще не стандартизованы, эта величина широко используется расчетчиками. Как упоминалось в гл. 8, статическая вязкость разрушения зависит от температуры. Динамическая ударная вязкость разрушения, как показано на рис. 15.24(6), также является функцией температуры возрастает с повышением температуры.  [c.534]

Создается своего рода противоречие. С одной стороны, известно, что для достижения высокой жаропрочности требуются стали или сплавы с карбидным или интерметаллидным упрочнением, превосходящие по этому показателю стали или сплавы, представляющие собой нестареющий у-твердый раствор. С другой стороны, именно они, стареющие стали и сплавы, наиболее подвержены локальным разрушениям (см. табл. 33). Все средства, направленные на предотвращение околошовных трещин, хоре нив борьбе с локальным разрушением. Довольно эффективным средством, в частности, является и использование мелкозернистых материалов. Однако радикального решения все эти средства не дают. Выходит, что для избавления лт локальных разрушений приходится отказаться от использования в сварных конструкциях, работающих длительное время при высоких температурах, аустенитных сталей и сплавов с карбидным или интерметаллидным упрочнением. Конечно, такой путь не может быть признан приемлемым.  [c.188]

В разделе 5.3 показано, что для многих пластичных материалов такие параметры механики разрушения, как коэффициент интенсивности напряжений К и номинальное напряжение в сечении нетто не являются параметрами, описывающими скорость распространения трещины ползучести. Напротив, скорректированный У-интеграл (У-интеграл ползучести /) является таким параметром. Кроме того, установлено, что и при ползучести в случае изменения напряжения переходная скорость распространения трещины также соответствует величине J (см. рис. 5.54). В связи с этим ниже рассматривается возможность применения параметра j и для анализа распространения трещины при зависящей от времени усталости. Для исследования использовали образцы типа N -M (см. рис. 5.49, а) из нержавеющей стали 316 цикл напряжения и частота нагружения указаны на рис. 6,28, v = = 0,1 цикл/мин. Способ определения У-интеграла ползучести в этом случае (рис, 6.31) заключается в том, что деформацию в пр.о цессе полуцикла растяжения считают равной направленной деформации ползучести измеряя раскрытие центра трещины V, происходящее в период выдержки напряжения, определяют скорость раскрытия V по наклону линий на диаграмме V — t. Величину/ оценивают с помощью уравнения, аналогичного уравнению  [c.216]


Таким образом, сериальная кривая ударной вязкости чистой отожженной низкоуглеродистой стали имеет низкий уровень нижнего плато и высокую ТНП (Т , Tqy), так как разрушение сколом облегчено. Релаксация напряжений при ТНП Т, ) определяет резкий переход и высокий уровень верхнего плато . Добавки включений сульфидов в сталь снижают уровень верхнего плато , но не влияют на переходную температуру. Подобный эффект получается при испытаниях материалов, имеющих постоянное число различно ориентированных включений [14] (см. рис. 120), так как межчастичное расстояние в поперечном направлении меньше. Аналогичные кривые для среднеуглеродистых сталей такой же чистоты гораздо более плавные. Нижнее плато расположено выше (так как измельчение микроструктуры с избытком компенсирует увеличение предела текучести), ТНП — ниже, а уровень верхнего плато также ниже, благодаря повышенному пределу текучести и малым значениям коэффициента деформационного упрочнения.  [c.207]

Материалы, устойчивые к усталостному разрушению. Высокая контактная выносливость может быть обеспечена лишь при высокой твердости поверхности. Усталостному разрушению довольно успешно противостоят подшипниковые стали (см. табл. 4.1.7). Для высокоскоростных подшипников применяют стали после электрошлакового переплава (например, ШХ15-Ш).  [c.656]

Дополнительные максимумы АЭ для некоторых материалов (см. рис. 2.45, а) наблюдаются в конце площадки текучести или вблизи максимума напряжения Ов. Они связаны с разрушением цемен-титовых пластинок в стали (см. рис. 2.45, а, кривая 2) и двойнико-  [c.174]

При изготовлении тонкостенных оболочковых конструкций для химического аппаратостроения в целях защиты их поверхности от воздействия агрессивной среды и сохранения прочности и пластичности металла при низкой температуре используют самые разнообразные материалы (биметаллы, цветные металлы и сплавы, среднелегированные стали и др ) В связи с этим технология сварки таких конструкции достаточно сложна, нередко требует сочетания различных способов, специальных присадков, дополнительных мероприятий по предотвращению трещинообразования, защите сварочной ванны от окисления и т.д Для операций сборки и сварки цилиндрической части сосудов обычно применяют роликовые стенды, оборуд>я их paзличны и приспособлениями флюсовыми подушками, стяжными скобами, автоматическими головками для сварки, распорками, центраторами и др Сварку обечайки с днищем производят стыковыми швами за один или несколько проходов В стенки сосудов и аппаратов приходится вваривать патрубки, лючки, штуцера и другие элементы, сварные соединения которых часто являются инициаторами разрушения конструкции На рис 19 приведены в качестве примера некоторые варианты конструктивного оформления шт церов в аппаратах химического производства. Варианты с дополнительно усиливающими кольцами (см. рис 1 9,й) и утолщенными патрубками (см рис 19,6) выполняются угловыми швами, в зонах которых возникает значительная концентрация напряжений В данном месте часто появляются усталостные трещины Более предпочтительными с точки зрения повышения работоспособности являются варианты соединений с вытяжкой горловины (см рис.  [c.18]

Между материалами хрупкими, с одной стороны, и материалами пластичными, с другой, можно вставить промежуточную группу — материалы ограниченной пластичности. Типичным примером таких материалов служат низколегированные, термически обработанные стали с высоким пределом текучести порядка 1500 МПа и выше. При растяжении стержневых образцов в этом случае наблюдается шейка, однако в зоне собственно разрушения нет поверхностей среза, характерных для пластичных материбшов, см. текст к рис. 2.4. Возникают лишь поперечные и продольные трещины.  [c.57]

Для сталей высокой прочности, алюминиевых и титановых сплавов в широком интервале температуры критические значения коэффициентов интенсивности напряжений мало зависят от температуры. Поэтому оценку сопротивления хрупкому разрушению элементов конструкций из таких материалов следует проводить по минимальным значениям / i . Как показано в 3, при определении по уравнениям (3.13) критических значений температуры элементов конструкций имеет существенное значение учет роли размеров напряженных сечений, остаточной напряженности, деформационного старения и охрупчивания в условиях эксплуатации. Эти факторы принимаются во внимание путем введения соответствующих экспериментально устанавливаемых температурных сдвигов А нр, и АГкрг (см. рис. 3.8).  [c.64]

Так как с Появлением шейки поперечное сечение в этом месте делается все меньше и меньше, то деформация образца происходит Рис. 19. при уменьшающейся нагрузке. Предел прочности является очень важной характеристикой прочности материала, и особенно важное значенне он имеет для хрупких материалов, таких, как чугун, закаленная и холоднотянутая сталь н т. п., которые получают сравнительно небольшие деформации при разрушении. При напряжении, соответствующем точке D (см. рис. 17), образец разрывается. Напряжение в момент разрыва образца по диаграмме растяжения лежит ниже, чем предел прочности. Это объясняется тем, что напряжения ыы условились относить к первоначальной площади поперечного сечения образца. На самом же деле в момент разрыва образца в материале будет наибольшее напрял1ение, так как площадь сечения аа (рис. 19) в этот момент достигает минимума. Это напряжение иногда называют истинным пределом прочности.  [c.36]

Защита поверхности первой стенки разрядной камеры, дивертора, коллекторных пластин от эрозионного разрушения потоками частиц из плазмы. Условия работы первой стенки в ТЯР первого поколения нейтронные (с энергией до 14 МэВ) и ионные (ионы водорода, дейтерия, трития с энергией до 20 КэВ, гелия с энергией до 3.5 МэВ) потоки плотностью 10 см -с , значительные тепловые нагрузки (20—50 Вт-см ), повышенная (300—600° С) температура с амплитудой термоцикли-рования до 150° С и скоростью 10° С-с , знакопеременные механические нагрузки. Приемлемыми материалами первой стенки ТЯР считают специальные нержавеющие стали и сплавы на основе никеля, молибдена, ванадия, ниобия.  [c.195]


Установлено, что с увеличением плотности мощности излучения возрастает как щирина зоны линейного упрочнения (рис. 47), так и ее глубина (рис. 48), причем закономерности изменения размеров зоны для всех исследованных материалов в диапазоне плотностей мощности 7 = (5...25) 10 Вт/см примерно одинаковы. Однако начиная с некоторой пороговой плотности мощности характер рассматриваемых зависимостей для отдельных материалов изменяется. Так, при 7п = 24 10 Вт/см для стали У8А и при = 22 10 Вт/см для стали Р6М5 начинается разрушение материала с образованием кратера. Расчетное пороговое значение плотности мощности, при которой начинается разрушение железа (стали), по данным некоторых исследователей [5] составляет  [c.72]

При анализе закономерностей изменения пределов выносливости по трещинообразованию и разрушению от термической обработки и поверхностного наклепа необходимо учитывать следующее. Пределы выносливости материала зависят от его свойств, величины и распределения остаточных напряжений термического или механического происхождения, а также формы концентратора напряжений (наличия нераспространяющихся трещин в исходных острых надрезах). В связи с этим при сравнении пределов выносливости по трещинообразованию различных материалов, полученных на одинаковых образцах, необходимо иметь в виду следующее. Различие в пределах выносливости может быть следствием того, что для одного материала выбранный концентратор напряжения имеет закритическое значение теоретического коэффициента концентрации напряжений (аа>асткр) и в нем имеются нераспространяющиеся усталостные трещины, а для другого материала концентратор тех же размеров имеет докритическое значение этого коэффициента (ао<аокр) и в нем нет нераспространяющихся трещин. Наличие в зоне надреза остаточных сжимающих напряжений термического происхождения снижает влияние остаточных напряжений, возникающих в результате последующего поверхностного наклепа, так как возможности увеличения сопротивления усталости за счет этих напрял<ений уже в какой-то мере исчерпаны. Так, для стали 08 после закалки и старения (см. рис. 61, а) наблюдается отклонение от полученной зависимости, которое можно объяснить следующим образом. Термическая обработка приво-  [c.151]

При выборе сплава важно проводить сравнение по критической длине трещины, которая зависит от вязкости разрушения и уровня напряжения [см. уравнение (11)]. В большинстве методик величину допустимого напряжения рассчитывают, исходя из прочности материала. Поскольку критическая длина трещины пропорциональна отношению (Ki /g) , необходимо, чтобы высокопрочные материалы имели значительно большую вязкость разрушения, чем низкопрочные. Примерно одинаковое сопротивление разрушению имеет сталь с допустимым напряжением 207 МПа, которая по вязкости разрушения в 9 раз превосходит алюминиевый силав с допустимым напряжением 69 МПа. Подобным образом [см. уравнение (20)] скорость роста трещины усталости в большой мере зависит от величины действующего напряжения. Поэтому, сопоставляя различные сплавы по скорости роста треш,ины в координатах dajdN — К, величину АД следует нормировать по действующему напряжению (А7< /Аст).  [c.23]

Испытываемый образец изнашивается под воздействием уд 1ряющихся, об него абразивных частиц. В. Н. Кащеев [85] применил способ абразивной струи для исследования влияния угла удара абразивного зерна на разрушение поверхности (фиг. 35). В его установке (фиг. 36) абразивные зерна, свободно падая с высоты 480 см, развивали скорость 8 mj eK. Другая установка Б. Н. Кащеева (фиг. 37) позволяет вести исследования при повышенных температурах. В этой установке абразивные зерна из воронки I через дозиметр 2 попадают в вертикальную трубку 3, где под действием собственного веса набирают скорость и затем ударяются о поверхности вращающегося Т-образного диска 4, изготовленного из исследуемого материала и заключенного в коробку 5 из нержавеющей стали, обогреваемую электрической печкой 6. При одновременном исследовании нескольких материалов на периферии дис-  [c.41]

Э. М. Райхельсон [Л. 43 и 56] сообщают об аналогичном результате сравнения эрозионной стойкости большого количества различных сталей, чугунов, латуней и бронз по результатам испытаний этих материалов на ударном стенде и магнитострикциопном вибраторе. Аналогичную картину можно получить, если сравнить приведенные в Л. 52] результаты испытаний эрозионной стойкости нескольких металлов на приборе с кольцевым возбудителем колебаний с результатами испытаний тех же материалов другими способами. Таким образом, можно считать установленным правило, согласно которому материалы по своей эрозионной стойкости располагаются практически в одинаковой последовательности независимо от способа испытаний . Объясняется это общностью природы эрозионного разрушения при ударах капель жидкости и при кавитации в жидкой среде (см. гл. 3).  [c.29]

Экспериментальные данные о разрушающей способности единичных ударов капель приведены в ряде работ (см., например, Л. 48 и 77—79]). Авторы (Л. 48] исследовали разрушение различных металлических и неметаллических материалов каплями воды цилиндрической формы (диаметр 1 мм, длина 20 мм, масса приблизительно равна массе большой дождевой капли) при скоростях соударения до 1 050 м/сек. Было установлено, что при одиночных ударах капли со скоростью 900 м/сек деформируется даже такой твердый материал, как карбид урана. Типичный пример деформации высокопрочной нержавеющей стали под действием одиночного удара цилиндрической капли показан на рис. 34. Там же показан профиль деформированной поверхности — кривая Ь. При ударе образуется мелкое блюдцеобразное углубление с более глубоким центральным углублением и кольцевой окантовкой, вид которой напоминает эроди-4 51  [c.51]

Методика расчета резьбовых соединений на мапоцикловую прочность при долговечностях 10° — 10 регламентируется нормами [11]. В основу принятых в нормах методов расчета положены принципы оценки прочности по предельным состояниям (см. гл. 2) разрушение, пластическая деформация по всему сечению детали, потеря устойчивости, возникновение остаточных изменений формы и размеров, приводящее к невозможности эксплуатации конструкции, появление макротрещин при циклическом нагружении. При выборе основных размеров резьбовых соединений, изготовляемых из материалов с отношением предела текучести (То,2 к пределу прочности щ, не превышающим 0,6, в качестве характеристики предельного напряжения принимается предел текучести. Запас прочности по пределу текучести = 1,5. В случае изготовления соединений из сталей с в  [c.199]

Вероятно, наиболее значительное воздействие на материалы оказывают ядерные превращения основных и легирующих элементов при взаимодействии их с тепловыми нейтронами. При этом больщннство эффектов связано с появлением гелия, образующегося при взаимодействии нейтронов с ядрами °В, или при реакции, в которой Ni сначала превращается в Ni, затем в результате реакции (п, а) превращается в Ре и гелий. Реакция на ядрах бора существенна при относительно малых дозах облучения, так как имеет высокое сечение захвата нейтронов и поэтому быстро выгорает, а реакция на ядрах никеля существенна при очень высоких дозах, так как образование гелия пропорционально квадрату флюенса нейтронов. Рис. 8.4 иллюстрирует изменение числа атомов гелия на 1г никеля с флюенсом тепловых нейтронов. При содержании бора 2-10 % это число составляет l,6 10 (в естественном боре 20% изотопа Б). Бор в количестве 2-10 —5-10 2% добавляют к некоторым аустенитным сталям для улучшения их свойств, где обычно он концентрируется по границам зерен. При флюенсах тепловых нейтронов 3-1№4 нейтр/см гелий, получающийся при ядерных реакциях В, является преобладающим, но при более высоких флюенсах количество гелия, образовавшегося по реакции (и, а) на ядрах никеля, далеко превосходит его. Однако гелий, получаемый на ядрах никеля, первоначально диспергирован по всему материалу и только при температуре >750° С он мигрирует к границам зерен. Действие гелия, полученного таким образом, хотя и недостаточно для уменьшения пластичности, приводящего к разрушению изделия, должно учитываться в расчетах. Уменьшение пластичности малозаметно до концентрации гелия 10 % при температуре <750° С. Более заметен этот эффект для таких сплавов, как Р516, которые содержат до 5-10 7о В и 40% Ni, хотя изготовляемые из них узлы не подвергаются значительному нагружению при высокой температуре в процессе эксплуатации тепловыделяющего элемента.  [c.97]


При выборе материалов для сварки аустенитных сталей различного легирования главное требование - исключить образование горячих трещин кристаллизационного и подсолидусного типа (см. рис. 10.6, б), а также локальных разрушений и снижение коррозионной стойкости. Сварку сталей с малым запасом аустенитности производят электродами (табл. 10.8), обеспечивающими в шве 4. .. 6 % ферритной фазы. Однако при сварке различных стабильно-аустенитных коррозионно-стойких сталей, как правило, не допускается в швах наличия ферритной фазы. Необходимо применять сварочные материалы, обеспечивающие швы с однородной аустенитной структурой без горячих трещин, что достигается легированием их молибденом, марганцем и азотом, например  [c.401]

В случае испытания хромистой стали на режимах, соответствующих данным рис. 2.11, а, также происходит одностороннее накопление деформаций циклической 1толзучести (рис. 2.14, s). Особенно быстро деформации накапливаются в рел име длительного статического нагружения при циклическо нагружении с высокой частотой без выдержек этот процесс протекает менее интенсивно. Из данных, приведенных на рис. 2.14, в [17], следует, что значение накопленной деформации циклической ползучести на стадии разрушения для данного напряжения (атах = 390 МПа) является относительно постоянным, хотя время до разрушения может быть различным. Это, по-видимому, связано с режимом термомеханического нагружения (отнулевой цикл) и механизмами формирования необратимых изменений в структуре материалов для данного и симметричного (рис. 2.14, б) режимов малоциклового деформирования. Однако малоцикловая долговечность и в этих условиях (см. рис.  [c.60]

Для оценки влияния плакирующего слоя на характеристики трещиностойкости двухслойной стали, изготовленной способом горячей пакетной прокатки, проведены испытания образцов ЦТ1 (см. рис. 5.9) ОТ1 и ОТ2 (см. рис. 5.12) при пониженных температурах 213К. Силовые и энергетические характеристики трещиностойкости исследуемых материалов приведены в табл. 5.3. В таблице также представлены параметры разрушения, рассчитанные на основе закона аддитивности [27]. Это значения КИН в каждом слое, определенные по зависимостям (5.2) и (5.3) при X = 0,95, и значения К ,, полученные по уравне-  [c.129]

Высокопластичные материалы (низкоуглеродистая сталь, свинец и др.) не удается разрушить при сжатии, так как они сплющиваются без разрушения. Продольное разрушение путем отрыва при сжатйи очень хрупких материалов (органическое стекло, мрамор и др.) наблюдается лишь при очень тщательной смазке торцов. При наличии, трения разрушение происходит по коническим поверхностях (см. рис. 11.12), При сжатии (как и при растяжении) можно определять пределы упругости, пропорциональности и текучести, но из-за методических трудностей эти величины определяют редко.  [c.195]

Стали повышенной прочности (ств = 1300... 1500 МПа) и твердости (40 - 50 HR ) со структурой троостита (см. рис. 9.15) относятся к материалам функционального назначения — рессорно-пружинным сталям. Циклические нагрузки в них вызывают слабое деформационное упрочнение поверхности и развитие ее усталостной повреждаемости. Усталостное разрушение в этих сталях, как правило, инициируют поверхностные концентраторы напряжений риски, царапины, обезуглероженные участки и т.п. Повышенная чувствительность к надрезам служит причиной более заметного разброса значений r i (см. рис. 9.15), замедления их роста с увеличением статической прочности и, как следствие, снижения коэффициента выносливости до 0,4. Для того чтобы обеспечить более высокую циклическую прочность этих сталей, необходимо уменьшить их чувствительность к концентраторам напряжений.  [c.277]

Алюминий и его сплавы, не имея порога хладноломкости, остаются вязкими при -253... - 269 °С. При охлаждении Ств у них повышается на 35-60 %, — на 15 - 25 %, а ударная вязкость монотонно уменьшается до 0,2 - 0,5МДж/м (см. рис. 15.16). Вязкость разрушения Ki практически не уменьшается, а значит, алюминиевые сплавы при охлаждении менее чувствительны к надрезам, чем при 25 °С. Из-за большого теплового расширения (значительной теплопроводности) алюминия при жестком закреплении элементов конструкций в них неизбежны значительные термические напряжения. Для их уменьшения применяют компенсаторы деформации или отдельные части конструкции (например, горловины криостатов) изготовляют из материалов с меньшей теплопроводностью, например из аустенитных сталей или пластмасс.  [c.516]

Если принять, что для всех материалов критическое напряжение разрушения достигается на расстоянии ух диаметров зерен от вершины трещины, то можно использовать эту модель для прогнозирования вязкости разрушения других сталей. Рассмотрим данные для котельной стали, представленные на рис. 74, б. К сожалению, наряду с измерениями вязкости не было проведено исследований микроструктуры. Примем, что максимальное перенапряжение достигается при ТИП. Температура в этом случае выше, чем для стали с азотом, и можно принять п = 0,2. Расчеты по экспериментальным значениям Ki (75 МН/м ) и Оу (530 МН/м ) при ТНП показывают, что расстояние, на котором достигается критическое значение напряжения, составляет около 30 мкм. Значит, размер зерна равен 15 мкм, что представляется реальным для стали соответствующего состава и принятой термической обработки. Локальное значение разрушающего напряжения оказалось равным 2600 МН/м , что значительно превышает значение 1600 МН/м , типичное для нелегированной нормализованной стали с тем же размером зерна (см. рис. 110). Распределение карбидов в котельной стали, однако, гораздо более тонкое, чем в обычной углеродистой стали, а это приводит к повышению критических напряжений. Указанный эффект наблюдал Оутс (см. рис. 109) на крупнозернистой стали с марганцем, имеющей гораздо большее сопротивление разрушению благодаря тонкому распределению карбидов.  [c.215]

П. п. при растяжении (сг ,), с катии (0 (,) и одинарном срезе (Т(.р) вычисляются нутом деления наибольшей нагрузки (в кг) на исходную площадь поперечного сечения образца (в или см ), ири двойном срезе макс. нагрузку относят к удвоенной площади поперечного сечения образца (см. Испытание на срез). Определение а ь возможно лишь тогда, когда при постоянно возрастающей нагрузке происходит разрушение образца. У высокой ластичных материалов (медь, алюминий и др.) разрушение образца, как правило, не наступает и вместо (Т J определяют напряжение, при к-ром на боковой поверхности испытуемого образца появляются трещины. Для большинства конструкционных металлич. сплавов условные П. п. при сжатии в 1,5—2,5 раза больше П. п. при растяжении, для хрупких материалов (инструментальная сталь, чугуны, стекла) а , обычно превышает aj, в 3—7 раз (табл.).  [c.45]

СОПРОТИВЛЕНИЕ ОТРЫВУ — среднее растягивающее напряжение в момент разрушения путем отрыва. Хотя одновременный отрыв по всему сечению соответствует бесконечной скорости развития трещины и потому никогда не осуществляется, С. о. является полезной хар-кой кон-струкц. материалов. При прочих равных условиях с ростом С. о. склонность к хрупкости падает, а конструктивная прочность растет. С. о. для хрупких при растяжении материалов совпадает с обычным пределом прочности. Для оценки С. о. материалов, пластичных при растяжении, необходимо воздействие охрупчивающих факторов понижение темп-ры или увеличение скорости нагружения введение надрезов или трещин переход к двухосному растяжению. В этих случаях оценка С. о. не всегда является бесспорной. С. о. большей частью сильно повышается с измельчением структуры. Многие факторы различно, иногда противоположно, влияют на С. о., и сопротивление пластич. деформации, напр., с повышением содержания углерода в низко-отпущенных сталях С. о. падает, а твердость растет (см. Отрыв, Излом отрыва).  [c.180]

К настоящему времени в СССР и за рубежом усилиями многих ученых осуществлены важные исследования явлений хрупкого разрушения твердых тел как в плане решения соответствующих краевых задач механики и создания физически более обоснованных критериев разрушения, так и в области разработок методов оценки склонности конструкционных материалов к хрупкому разрушению (см., например, обзоры в работах [9, 82, 118, 145]). Необходимость в таки исследованиях обуслоЬ-лепа, с одной стороны, тем, что высокопрочные конструкционные материалы (например, жаропрочные сплавы, упрочненные стали, металлокерамические материалы, некоторые пластмассы), как правило, являются хрупкими материалами, т. е. такими, которые уже при нормальных температурах и малых скоростях нагружения разрушаются путем распространения трещины без предварительных пластических деформаций макрообъемов тела. (При низких температурах, повышенных скоростях нагружения, воздействии некоторых поверхностно-активных сред, наводороживании и в других условиях, приводящих к ограничению пластического течения конструкционного материала, его разрушение путем распространения трещины доминирует). С другой стороны, реальные условия эксплуатации конструкции всегда предусматривают наличие некоторой жидкой или газовой среды. Эта среда проникает в деформируемое тело (элемент конструкции) через его структурные несовершенства — дефекты (макро- или микротрещины, границы зерен, включений) и особенно интенсивно взаимодействует с участками тела, деформированными за предел упругости. К таким участкам относятся окрестности резких концентраторов напряжений (трещины, остроконечные полости или жесткие включения и др.). Именно в окрестности подобных дефектов среда, изменяя физико-механические свойства деформируемого материала, в первую очередь его сопротивление зарождению и развитию трещины, оказывает существенное влияние на служебные свойства (несущую способность) рабочего тела в целом.  [c.9]


Влияние наводороживания на охрупчивание металлов, т. е. повышение его склонности к хрупкому разрушению, известно давно. Водород, проникающий в металл при его изготовлении, термической обработке, сварке, а также при травлении, нанесении электролитических покрытий и, наконец, в процессе эксплуатации материала в некоторых активных средах, значительно ухудшает физико-механические свойства стали и, следовательно, понижает работоспособность конструкций. Склонность к хрупкому разрушению под действием водорода у мягких сталей довольно ярко проявляется в снижении их пластичности (уменьшении значений л и б), а также в уменьшении величины характеристик технологической пробы на перегиб и скручивание. Оценить склонность к хрупкому разрушению под действием водорода у высокопрочных и малопластичных материалов указанными методами довольно трудно. В таких случаях данные о трещиностойкости материала являются важным показателем степени влияния наводороживания на хрупкую прочность стали. Приведем результаты таких исследований на стали У8 в закаленном и низкоотпу-щенном состоянии. Эти исследования проводили на пластинах размером 360 X 180 мм с центральной изолированной трещиной [13, 49], подвергнутой растяжению сосредоточенной нагрузкой (см. приложение 3, рис. 117, а). После нескольких замеров параметров, характеризующих распространение трещины в данном материале в среде воздуха лабораторного помещения, образец снимали с разрывной машины и помещали в ванну для насыщения водородом. Наводороживание проводили в 20%-ном растворе серной кислоты при плотности тока 8 шдм в течение 2 ч. Немедленно после наводороживания определяли трещиностойкость наводо-  [c.158]

Эти материалы подвергнуты детальному исследованию для оценки склонности их к хрупкому разрушению при ударном изгибе с учетом влияния глубины трещины и записью параметров разрушения этих материалов при ударном изгибе (см. параграф 4 настоящей главы), Влияние металлургических факторов на хладноломкость стали. В последние годы была показана возможность повышения хладо-стойкости сталей за счет совершенствования процессов конечного раскисления [151—15о1. Проиллюстрируем это на примере [23, 50, 109] конечного раскисления стали 45Л. Сталь выплавляли в 5-тонной дуговой печи. После предварительного раскисления ферромарганцем и ферросилицием металл выливали в стопорный ковш. Раскислители (алюминий, силикокальций и ферроцерий) вводили в 350-килограммовые заливочные ковши, которые наполняли металлом из стопорного ковша. Это позволило исключить влияние посторонних факторов (химсостава, температуры и др.) и получить металл, отличающийся только вариантом конечного раскисления, обеспечивающего разные уровни его газонасыщен-ности, механические свойства и хладостойкость.  [c.178]

Исследования проводили на образцах Шарпи (см. рис. 95) с трещинами из сталей ЭИ961, Х17Н2, ЭИ696М и титанового сплава ВТЗ-1. Режимы термической обработки и механические характеристики исследуемых сплавов приведены в табл. 13. Прежде всего были проведены эксперименты по изучению влияния длины исходной трещины на энергию разрушения (распространения трещины) при ударном изгибе образца. С этой целью на образцах Шарпи создавали усталостные трещины различной относительной глубины X = Z/fe, где I — длина усталостной трещины вместе с концентратором Ь — ширина образца. Исследуемый диапазон относительных глубин трещин колебался в пределах X = = 0,1 0,65. Подготовленные образцы разрушали путем трехточечного ударного изгиба, и записывали диаграммы разрушения для различных длин трещин рис. 89 приведены значения а, в зависимости от относительной длины трещины для исследуемых материалов. Как видно из рисунка, в интервале относительных длин трещин 0,1—0,3 для всех исследуемых материалов наблюдается значительное падение удельной энергии разрушения а у. На этом же рисунке приведены диаграммы разрушения нагрузка — время исследуемых материалов, записанные для образцов с различной длиной трещины (номер диаграммы соответствует точке на Ли)  [c.183]


Смотреть страницы где упоминается термин Стали (см. Разрушение, материалы) : [c.237]    [c.50]    [c.125]    [c.18]    [c.194]    [c.196]    [c.187]    [c.158]    [c.87]    [c.89]    [c.91]   
Кавитация (1974) -- [ c.0 ]



ПОИСК



Материалы Стали

Разрушение материалы



© 2025 Mash-xxl.info Реклама на сайте