Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электроны длина волны

Туннельные переходы. При низкой температуре в силовых электрических полях напряженностью около 5-10 ...10 В/см наблюдается электронная эмиссия, быстро возрастающая с увеличением Е, а также с появлением поверхностных дефектов, имеющих заострения и шероховатости. Так как Wa>Wj, то при низких температурах практически нет электронов с энергиями Wx>Wa — AUf. Следовательно, электроны проходят сквозь узкий барьер непосредственно с уровня Ферми и ниже без затраты энергии. Эти переходы носят название туннельных и объясняются волновыми свойствами электронов. Длина волны равна  [c.66]


Найти энергию и импульс рентгеновского фотона с длиной волны 0,1 нм, а также кинетическую энергию и импульс электрона, длина волны де Бройля для которого имеет то же значение 0,1 нм.  [c.66]

Удобно ввести с помощью соотношения m = MV И так называемое избыточное увеличение т. Оно указывает, насколько фактическое увеличение превышает отношение световой и электронной длин волн. В практических приложениях оно будет, вероятно, величиной порядка единицы, так как отношение л"/ / имеет значение около 100 000, а именно этот порядок увеличения требуется для получения фотографий с высоким разрешением. С этим обозначением из выражения (7) или (9) мы получим )  [c.287]

Радикальное увеличение разрешающей способности достигается в электронном микроскопе, где вместо световых лучей используются Электроны. Соответствующая электронам длина волны де Бройля K=h/ mv) при ускоряющем напряжении 10 кВ равна 10 " м, что уже меньше размеров атома ( 10 m). В формирующих изображение системах электронных линз (магнитных и электростатических) из-за больших аберраций используются только узкие параксиальные пучки-с малыми апертурами ( 0,01 н-0,1), и все же разрешающая способность электронного микроскопа в сотни раз больше, чем оптического. Это позволяет разрешать детали, всего в несколько раз превосходящие размеры отдельных атомов.  [c.371]

Длина волны де Бройля для электрона Длина волны де Бройля для атома Волновой вектор  [c.541]

Вследствие малой длины волны рентгеновские лучи не отражаются от поверхности, а проникают внутрь вещества. Под действием электромагнитного поля этих лучей электроны атомов приводятся в колебательное движение.  [c.36]

В качестве освещения в электронном микроскопе использован электронный луч. Как видно из приведенной формулы, разрешающее расстояние определяется длиной волны.  [c.38]

Длина волны электронных лучей (X) зависит от скорости движения электронов  [c.38]

В поле напряженностью 50000 В электронам сообщается скорость 124000 км/с, что соответствует длине волны, равной сотым долям ангстрема. Разрешающая способность современного электронного микроскопа порядка  [c.38]

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]


Волны рентгеновского излучения, воздействуя на электроны атомов исследуемого металла, заставляют их колебаться с частотой волны. Таким образом, электроны атомов становятся сами источниками колебаний и распространяют рентгеновское излучение с длиной волны падающего пучка. Поскольку атомы в кристаллической решетке исследуемого металла располагаются в определенном порядке, излучения, исходящие от электронов.  [c.528]

Для сварочных дуг, имеюш,их Те л Г. Ю" К, излучение рекомбинации преобладает над тормозным излучением электронов и имеется преимущественно сплошной спектр с максимумом в области видимого и ультрафиолетового диапазонов (0,3... 1,0 мкм). Спектр сварочной дуги в парах металлов приближается к спектру солнечного излучения с небольшим сдвигом от последнего в сторону длинных волн (рис. 2.15).  [c.47]

По мере осознания необходимости получения мощных источников когерентного света физики исследовали различные способы их генерации и аналогично генерации радиоволн пытались применить для этой цели электронные потоки и объемные резонаторы. Однако размеры резонатора должны быть соизмеримы с длиной волны, что в данном случае трудно осуществимо. Традиционное для радиотехники генерирование колебаний при помощи электронных потоков в данном случае оказалось неосуществимым и получение когерентных электромагнитных колебаний в оптическом диапазоне было осуществлено средствами квантовой электроники.  [c.118]

Теория Максвелла установила связь между электрическим, магнитным и оптическим параметрами среды. Однако поскольку, по Максвеллу, е и р. — величины, не зависящие от длины волны света, то явление дисперсии (зависимость показателя преломления от длины волны) оставалось необъясненным в рамках электромагнитной теории. Этот пробел был заполнен после того, как Лорентц предложил электронную теорию, согласно которой диэлектрическая проницаемость среды зависит от длины волны падающего света.  [c.7]

Рентгеновские лучи. Условие резкого торможения осуществляется при бомбардировке быстрыми электронами твердого антикатода, при котором, как увидим ниже, излучаются короткие электромагнитные волны — рентгеновские лучи разных длин волн.  [c.157]

Как показывают опытные данные, рентгеновские лучи сплошного спектра возникают при энергиях электронов, не превышающих некоторой критической величины (обычно при напряжениях на трубке до 20—30 кВ), характерной для данного материала антикатода. Рентгеновские лучи сплошного спектра имеют резкую границу со стороны коротких длин волн, называемую коротковолновой границей сплошного спектра.  [c.158]

Итак, показатель преломления среды определяется через оптическую поляризуемость атома (поляризуемость, обусловленную полем световой волны), и, таким образом, задача дисперсии — нахождение зависимости п от X — сводится к нахождению вида зависимости оптической поляризуемости от длины волны (или от частоты, так как ы = 2пс/1, где с— скорость света). Поскольку поляризуемость связана со смещением электрона г из положения равновесия, задача дисперсии сводится к нахождению г из уравнения движения электрона.  [c.270]

В парах, где атомы расположены на значительных расстояниях друг от друга, зависимость коэффициента поглощения от длины волны представляется в виде совокупности узких спектральных линий, соответствующих частотам собственных колебаний электронов внутри атомов. Подобная зависимость для паров натрия представлена на рис. 11.11.  [c.281]

Найдите максимальную скорость электронов, освобождаемых при фотоэффекте светом с Длиной волны 4-10 м с поверхности материала с работой выхода 1,9 эВ.  [c.340]

Рентгеновские лучи характеризуются весьма малой длиной волны (X < 100 А), а их свойства сильно отличаются от свойств других видов электромагнитного излучения. Рентгеновские лучи возникают в результате бомбардировки антикатода разрядной трубки быстрыми электронами. Кинетическая энергия электронов == qll и проникающая способность рентгеновских лучей возрастают с увеличением положенной разности потенциалов и.  [c.13]


Формально такой же результат получается при описании совершенно иного явления — распространения радиоволн в ионосфере. Хотя в этом случае рассматриваются весьма низкочастотные колебания (длина волны порядка десятков метров), исходное положение со о>о оказывается приемлемым. Действительно, ионосфера представляет полностью ионизованный газ (плазму), в котором излучающие электроны не связаны внутриатомными силами. Отсюда следует, что в рамках развиваемой теории нужно положить = f/m = 0. Для таких свободных электронов условие й>о будет удовлетворяться даже в области столь низких частот.  [c.146]

Комптоновская длина волны электрона  [c.391]

Но из (2.3) не видно, что п должно зависеть от длины волны света X, тогда как из опыта известно, что существует дисперсия света, т. е. п меняется с изменением длины волны света п = (7 ) ). Объяснения этого факта теория Максвелла, ограничивающаяся для характеристики электромагнитных свойств вещества лишь макроскопическими параметрами (е, р), дать не могла. Необходимо бьшо более детальное рассмотрение процессов взаимодействия вещества и света, покоящееся на углубленном представлении о структуре вещества. Это и было сделано Лорентцом, создавшим электронную теорию (1896 г.). Представление об электронах, входящих в состав атомов и могущих совершать в них колебания с определенным периодом, позволило объяснить явления испускания и поглощения света веществом, равно как и особенности распространения света в веществе. В частности, сделались понятными и явления дисперсии света, ибо диэлектрическая проницаемость е оказывается в рамках электронной теории зависящей от частоты электромагнитного поля, т. е. от длины волны %.  [c.22]

Наряду с теми трудностями, к которым приводила электронная теория Лорентца, опиравшаяся на представление о неподвижном эфире, выяснились и другие затруднения этой теории. Она оставляла неразъясненными многие особенности явлений, касающихся взаимодействия света и вещества. В частности, не получил удовлетворительного разрешения вопрос о распределении энергии по длинам волн в излучении накаленного черного тела. Накопившиеся затруднения вынудили Планка сформулировать теорию квантов (1900 г.), которая переносит идею прерывности (дискретности), заимствованную из учения о молекулярном строении вещества, на электромагнитные процессы, в том числе и на процесс испускания света. Теория квантов устранила затруднения в вопросах излучения света нагретыми телами она по-новому поставила всю проблему взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света. Процесс развития теории квантов, ставшей основой современного учения о строении атомов и молекул, продолжается и ныне.  [c.24]

Для того чтобы источник испускал достаточно монохроматическое излучение с хорошо воспроизводимой средней длиной волны, нужно по возможности устранить все причины, возмущающие излучение. Свечение должно вызываться в парах низкого давления во избежание возмущений вследствие соударений атомов и при небольшом разрядном токе для ослабления возмущающего действия электрических полей (эффект Штарка), обусловленных электронами и ионами пара при значительной их концентрации. Наиболее трудно устранить влияние эффекта Допплера (см. 128), вызванного тепловым движением излучающих атомов, и осложнения, связанные со структурой излучающих атомов. Для ослабления эффекта Допплера желательно иметь в качестве излучателя вещество с атомами возможно большей массы, обладающее необходимой упругостью пара при возможно низкой температуре (см. 22). Сложность излучаемых  [c.143]

Однако развитие современной теоретической (физики привело к мысли, что распространение потока любых материальных частиц управляется волновыми законами, так же как и в случае светового потока. Это значит, что строгое решение задачи о движении частиц под действием сил может быть получено лишь путем рассмотрения распространения соответствующих волн. Не останавливаясь на природе таких волн, укажем лишь, что длина их связана с массой т и скоростью V движущихся частиц ( )ормулой к = к/ти (де Бройль, 1923 г.), где к = 6,624-10 Дж-с — постоянная Планка. Отсюда видно, что чем больше масса частицы и чем больше ее скорость, тем меньше длина волны. Но даже для частиц с наименьшей известной массой, для электронов (т ж 0,9-10 г), движущихся с умеренной скоростью, соответствующая длина волны очень мала. Так, например, для электронов, ускоряемых разностью потенциалов в 150 В, 1 = 1 А ). Для более быстрых электронов, а также для атомов, молекул или же тел еще большей массы длина волны будет гораздо более короткой. Таким образом, законы распространения даже наиболее легких частиц (электронов) соответствуют законам распространения очень коротких волн.  [c.358]

Для численных расчетов длины волны, связанной с электроном, формуле де Бройля удобно придать вид Я=12,24/ Г ангстремов, где разность потенциалов V выражена в вольтах.  [c.358]

ВОЛНЫ, соответствующая электронам, очень мала. Она имеет порядок нескольких тысячных нанометра, ибо обычно применяются электроны с довольно большими скоростями (соответствующими ускоряющей разности потенциалов 40—60 кВ). Тем не менее, как мы видели в 97, для рассмотрения основного вопроса о разрешающей силе микроскопа надо принять во внимание, что длина волны  [c.360]

Электроны. Длина волны де-Бройля для электрона Я связана с его энергией уравнением е =/г2/2тЯ , где т = 0,91 IX X 10 г—масса электрона, В более употребительных еднпица.х  [c.63]

В тесной связи с этим находится и упоминавшаяся выше проблема вычисления переноса излученного тепла между близко расположенными высокоотражающими поверхностями при очень низких температурах. При этих условиях длины волн, посредством которых передается основная часть тепловой энергии, становятся сравнимыми с расстояниями между поверхностями. Экспериментально было найдено [34], что если средняя длина волны превышает половину расстояния между отдельными поверхностями, го наблюдаемый перенос тепла превышает перенос, вычисленный по закону Стефана — Больцмана. Величина этого аномального переноса была точно предсказана в недавней теоретической работе [17]. Расчет основан на предположении, что поле низкотемпературного излучения вблизи металлической поверхности обусловлено тепловыми колебаниями электронов в двумерном слое у поверхности металла. Эти колебания вызывают как бегущие, так и квазистационарные волны. Первые формируют классическое поле излучения, наблюдаемое на больших расстояниях от поверхности, тогда как вторые ограничены областью вблизи поверхности. При сближении двух таких поверхностей квазистационарные волны становятся преобладающим  [c.317]


Рязреи1аю1цая способность электронных 1пк[)оскопов значительно выте оптических. Использование электронтлх лучей, обладающих очень мллон длиной волны f(0,04 ч-0,12) нм1, дают возможность различать детали изучаемого объекта размерами до 0,2 —  [c.13]

При малых энергиях электронов в тяжелых благородных газах взаимодействие электронов с атомами сильно ослабляется в связи с эффектом Рамзауэра. Это объясняется волновым характером поведения электрона в процессе его упругого взаимодействия. При определенном соотношении между длиной волны де Бройля  [c.41]

И антикатодом сообщает большую скорость термоэлектронам. Быстрые электроны, попадая на антикатод, испытывают на нем резкое торможение, в результате чего и возникает тормозное излучение — электромагн1шюе излучение короткой длины волны. Полученные таким образом рентгеновские лучи обладают, подобно белому свету, сплошным спектром и поэтому называются белым рентгеновским излучением. Белое излучение по известным причинам называется также тормозным.  [c.158]

Приближенные расчеты показывают, что волна, соответствующая электрону, ускоренному полем в 150 В, равна 1 А, что на три порядка меньше длины волны видимого света. Поскольку электрону соответствует столь короткая волна, это наводит на мысль о возможности скор1струирования микроскопа, работающего с электронным пучком. Роль оптической системы могут выполнять соответствующим образом подобранные электрические и магнитные поля — электромагнитные линзы для электронного пучка. Этот прибор — электронный микроскоп — впервые был изготовлен в СССР акад. А. А. Лебедевым. Электронные микроскопы в принципе могут ПОЗВОЛИТЬ различить детали размером порядка 1 А. В настоящее время современные электронные микроскопы позволяют различить детали размером 25—30 А.  [c.203]

Соотношения, связывающие волновые характеристики (частота v и длина волны X) с корпускулярными (энергия и импульс р), установленные Эйнштейном (1905 г.), были обобщены Луи де Бройлем (1924 г.) на частицы с отличной от нуля массой покоя . Тем самым была предложена гипотеза, согласно которой свойство дуализма присуще не только свету, но материи вообще. Экспериментальное обнаружение явления дифракции электронов (Дэвиссон и Джермер в 1927 г., Тартаковский и Томсон в 1928 г.) послужило подтверждением гипотезы де Бройля.  [c.338]

Лампа бегущей волны (Л Б В) — электровакуумный прибор, работающий на основе взаимодействия электронного потока с бегущей волной электромагнитного поля, созданного длинной спиралью, расположенной внутри баллона лампы применяется в усилителях и генераторах СВЧ, может использоваться в относительно широком диапазоне частот (до 10% от средней частоты), характеризуется низким уровнем шумов, может отдавать мощность 100 кВт и более. В изофарной ЛБВ поддерживается оптимальный фазовый сдвиг между током и электромагнитной волной, в изохронной ЛБВ к концу замедляющей системы скорость электромагнитной волны снижается для лучшего согласования скорости электронов и волны, в многолучевой ЛЕВ используется несколько параллельных пучков электронов [2].  [c.146]

Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме стационарным состояниям атома соответствуют такие орби гы электронов, на которых укладывается целое число длин волн де Бройля.  [c.340]

Комптоновская длина волны. Предположим, что электрон, масса которого т 1-10- г, движется по круговой орбите радиусом R 4-10 см (этот радиус приблизительно равен величине hjinm , или Й/тс, представляющей собой фундаментальную длину в атомной физике, известную под названием комптоновской длины волны). С какой скоростью (в см/с) должен двигаться электрон, чтобы обладать наблюденным значением момента импульса, который равен (1/2)й (1/2) 10 эрг-с Здесь Й представляет собой постоянную Планка, деленную на 2я. Эту задачу удобно решать в общем виде, начиная с выражения для момента импульса m.R ui = (l/2)ft и затем находя  [c.265]

Можно получить целый ряд важных характеристических длин, если делить классический радиус электрона на различные степени числа ос. Одна из важных характеристических длин, часто встречающаяся в квантовой физике,— это компто-новская длина волны электрона  [c.277]

Айвс и Стилуэлл (Opt. So . Am., 1938, у, 28, p. 215 1941, v. 31,. p. 369) выполнили спектральные опыты с пучками водородных атомов, находившихся в возбужденных электронных состояниях. Атомы, входившие в состав молекулярных водородных ионов-и Н+, ускорялись в сильном электрическом поле. Как продукт распада ионов образовывался атомарный водород. Скорость его атомов имела порядок р = 0,005. Айвс и Стилуэлл определяли смещение средней длины волны отдельной спектральной линии, испускаемой атомами водорода. Среднее значение бралось по направлениям вперед (в) и назад (н) относительно траектории полета атомов. Из (42) получаем, считая Рв = —Рн, что средняя длина волны  [c.360]

В [134] успешно апробирован спектрально-оптический метод фракционного определения концентраций С60 и С70 в угольном конденсате - фул-леренсодержащем полупродукте - без предварительной хроматографической очистки. Количественный анализ гексановых экстрактов смесей СбО и С70 проводился по электронным УФ/виднмьщ-спектрам поглощения методом трех аналитических длин волн. В [135] предложена методика исследования кинетики экстракции фуллеренов с использованием оптической спектроскопии в УФ-области. Это подтверждает высокую чувствительность данного диапазона частот в области низких концентраций фуллереновых растворов.  [c.231]


Смотреть страницы где упоминается термин Электроны длина волны : [c.159]    [c.14]    [c.183]    [c.280]    [c.337]    [c.33]    [c.20]    [c.35]    [c.147]    [c.361]   
Физика дифракции (1979) -- [ c.87 ]



ПОИСК



Волна длинная

Де-Бройля длина волны для электрона

Де-Бройля длина волны численная связь с энергией электронов

Длина волны

Зависимость длины волны электронов от приложенного напряжения

Классификация столкновений электронов с атомами. Поперечное сечение Средняя длина свободного пробега Экспериментальное определение поперечного сечения упругого столкновения электрона с молекулами. Эффект Рамзауэра и Таунсенда. Интерпретация эффекта Рамзауэра- Таунсенда Волны де Бройля

Комптоновская длина волны нуклон электрона



© 2025 Mash-xxl.info Реклама на сайте