Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия разрушения в зависимости

Процесс хрупкого разрушения может включать три этапа возникновение трещины, медленное (стабильное) ее развитие и лавинообразное (нестабильное) распространение разрушения. В зависимости от материала, геометрии изделия и условий нагружения продолжительность стадии медленного развития может быть различной либо совсем отсутствовать, либо быть весьма длительной. В последнем случае отдельные конструкции допускают к эксплуатации с трещиной или трещиноподобным дефектом при условии контроля за их медленным развитием и своевременного предупреждения лавинообразного разрушения. Для этого необходимо знание скорости медленного развития и критического размера трещины, свыше которого начинается ее нестабильное распространение.  [c.545]


Для количественного сопоставления склонности материалов к хрупкому разрушению в зависимости от температурных условий эксплуатации широко используется способ серийных испытаний на ударную вязкость стандартных образцов с надрезом. По результатам этих испытаний обычно строят температурные зависимости ударной вязкости Ои и доли вязкой составляющей в изломе Fb- Для хладноломких металлов эти зависимости имеют резкий спад, по которому определяют критическую температуру хрупкости Гкр. При более пологих переходах в область хрупкого состояния используют условные приемы определения Гкр по допуску на снижение Дн или Fs- Полученная из испытаний критическая температура хрупкости Гкр(°К) сопоставляется с минимальной температурой металла в условиях эксплуатации Та.  [c.20]

Для использования такой зависимости, особенно в случае неоднородных напряженных состояний, необходимо определение малых неупругих деформаций, что связано с преодолением соответствующих вычислительных и экспериментальных трудностей. Кривые усталости, выраженные в пластических деформациях, имеют преимущество в смысле единственности условий разрушения в области малого и большого числа циклов.  [c.110]

Лопатки турбин в условиях эксплуатации, как правило, накапливают повреждения более устойчиво, чем лопатки компрессора. Это связано с тем, что они подвергаются постоянному нагреву при длительном статическом растяжении под действием динамической нагрузки от вращения ротора. В этом случае возможно возникновение такого явления, как ползучесть или термоциклическое разупрочнение материала в результате теплосмен по циклу ПЦН. Каждый механизм исчерпания долговечности лопатки имеет свою длительность действия, и поэтому разрушение лопатки на разных стадиях эксплуатации отвечает разным критериям прочности. В результате этого распределение долговечности лопаток может иметь не один, а несколько максимумов по числу случаев разрушения, в зависимости от того, какие виды механизмов разрушения могут последовательно доминировать при исчерпании ресурса лопатки.  [c.567]

Изменение характера разрушения в зависимости от температуры цикла наблюдалось в алюминиевом сплаве AK4-ITI при режимах 185 20°С разрушение было практически целиком внутризеренным при 250 < 20°С — со значительной долей по границам зерен аналогичная картина наблюдалась при соответствующем изменении температуры длительного статического нагружения. При сравнимых условиях испытания в литых ни-кель-хромовых жаропрочных сплавах при наличии крупнозернистой разнородной макроструктуры с грубыми выделениями карбидных фаз по границам зерен трещины имели межзеренный характер, в сплаве с меньшим размером зерна и более однородной структурой трещины проходили по телу зерен [12] на не благоприятное влияние на термостойкость крупнозернистой структуры указывалось в работе [8].  [c.163]


До недавнего времени характер структурных изменений металлов и сплавов в условиях трения скольжения характеризовался только кривыми с насыщением . Эти кривые свидетельствуют об упрочнении материала до уровня, определяемого его исходным состоянием и условиями трения, и не несут информации о том, что одновременно с упрочнением происходит разрушение тонкого поверхностного слоя. Такое несоответствие обусловлено тем, что в процессе трения толщина структурно измененной зоны составляет десятки, а то и сотни микрон, в то время как толщина слоя, претерпевающего разрушение, в зависимости от условий — микроны и доли микрона. Методы оценки структурного состояния поверхностей трения, которые обычно используются (рентгеноструктурный анализ, измерение микротвердости и т. д.), не позволяют выявить вклад зоны разрушения в общую картину изменения поверхности в процессе трения.  [c.48]

Как показано выше, характер изменения электрохимических свойств сталей, циклически деформируемых в коррозионной среде, взаимосвязан с определенными этапами развития коррозионно-усталостных повреждений. Данные об изменении электрохимических свойств при усталости позволяют интерпретировать развитие разрушений в зависимости от амплитуды напряжении и количества циклов нагружения. Они позволяют также описать процесс разрушения с количественной стороны, так как на их основе можно установить, в какой области и после какого числа циклов происходит развитие сдвигообразований, микротрещин, магистральной трещины и как при этом повышается электрохимическая активность металлической поверхности, Данные об электрохимических свойствах металлов в условиях коррозионно-усталостного разрушения позволяют обоснованно выбрать для них параметры катодной защиты.  [c.177]

Большие трудности связаны с получением статистических данных о несущей способности элементов конструкций. Для этого используются в основном два способа. По одному из них экспериментально определяются функции распределения характеристик усталости (или других необходимых механических свойств) для материала путем массовых испытаний лабораторных образцов. Пользуясь условиями подобия, по ним определяется циклическая несущая способность деталей. Систематические исследования усталостных свойств легких авиационных сплавов Б статистическом аспекте были проведены, например, кафедрой сопротивления материалов МАТИ [7 10 11 14] и другими организациями [5]. Это позволило показать применимость усеченного нормально логарифмического распределения для величин долговечностей и ограниченных пределов усталости, установить зависимость дисперсий чисел циклов от уровня напряжений, построить семейства кривых усталости по параметру вероятности разрушения. На основе гипотезы прочности слабого звена были разработаны критерии подобия при усталостных разрушениях в зависимости от напрягаемых объемов с учетом неоднородности распределения  [c.144]

Сопротивление разрушению при различных типах напряженных состояний определяется механическими свойствами и условиями прочности в зависимости от возможного характера разрушения. При этом следует различать два основных вида разрушения I) хрупкое, протекающее без значительных пластических деформаций, и 2) вязкое, сопровождающееся пластическими деформациями. Один и тот же материал в зависимости от типа напряженного состояния (степени его объемности) и условий деформирования (температура, скорость нагружения, агрессивная среда) может давать хрупкое п вязкое разрушение (211, [40].  [c.437]

Сопротивление разрушению при различных типах напряженных состояний определяется механическими свойствами и условиями прочности в зависимости от возможного характера разрушения. При этом следует различать два основных вида разрушения 1) хрупкое, протекающее без значительных пластических деформаций, и 2) вязкое, сопровождающееся пластическими дефор маниями. Один и тот же материал в зави-  [c.483]


Для расчетной оценки малоцикловой прочности элементов конструкций необходимо обоснование условий формирования и достижения предельного состояния материала по разрушению в зависимости от параметров режимов термомеханического нагружения.  [c.81]

Возникающие в местах концентрации напряжений трещины, как правило, распространяются под действием циклических эксплуатационных нагрузок в пластически деформированных зонах. В зависимости от конструктивных форм и абсолютных размеров сечений, температуры, скорости и характера нагружения, механических свойств, уровня начальной дефектности и остаточной напряженности в конструкциях могут возникать хрупкие состояния, характеризуемые весьма низкими (до 0,1 сгт) разрушающими напряжениями. Условия образования и развития хрупких трещин при этом оказываются связанными со стадией развития трещин циклического нагружения. В вершине трещин длительного статического, циклического и хрупкого разрушения в зависимости от номинальной напряженности и размеров трещин возникают местные упругопластические деформации соответствующего уровня. Таким образом, оценка несущей способности и обоснование надежности элементов машин и конструкций должны осуществляться на основе анализа кинетики местных упругих и упругопластических деформаций, статистики эксплуатационной нагруженности, энергетических и силовых деформационных критериев разрушения.  [c.78]

С точки зрения существа физических процессов, сопровождающих деформирование и разрушение, наиболее общим подходом является сопоставление деформационных характеристик материала при различных условиях нагружения в зависимости от степени накопленного им повреждения ц. И тогда обобщенную диаграмму независимо от степени исходного деформирования можно записать в виде  [c.167]

Выбор и разработка износостойких материалов— весьма сложная задача, так как поведение материалов при трении обусловлено не только их свойствами, но и конкретными условиями нагружения. В зависимости от условий трения и назначения узла меняется и комплекс требований к материала.м. Опыт показывает, что при создании износостойких пар трения следует основываться на физических и механических свойствах контактирующих тел и разделяющих их пленок, покрытий [25]. Износостойкие материалы должны обладать высокой прочностью высоким сопротивлением усталостному разрушению теплостойкостью способностью к образованию при трении прочных пленок вторичных структур способностью к хорошему удержанию смазки на поверхности.  [c.260]

Как видно из таблицы, максимально допустимые температуры эксплуатации значительно отличаются друг от друга. Таким образом, по результатам лабораторных коррозионных испытаний при повышенных температурах, имитирующих, казалось бы, работу покрытия в реальных условиях, нельзя с достаточным основанием судить о действительной коррозионной стойкости покрытий в промышленных условиях. Изучение основных закономерностей коррозионного разрушения в зависимости от различных параметров испытания, таких как время, температура, концентрация раствора, отношение объема реагента к площади образца и др.,— позволит выбирать конкретные условия для проведения коррозионных испытаний или разработать методы расчета, позволяющие устранять несоответствие между скоростью коррозии эмалевых покрытий в реальных условиях эксплуатации и в условиях лабораторных испытаний.  [c.86]

В основу конструкции приборов для испытаний на стойкость к газовой эрозии положен принцип сосредоточенного действия газовой струи на поверхность испытуемого образца. Установки для лабораторных испытаний имитируют различные условия эксплуатации оборудования. Большое распространение получили лабораторные бомбы различной конструкции, в которых осуществляется сжигание газовых смесей. Использование образцов в виде сопел различной формы и размеров позволяет исследовать характер эрозионного разрушения в зависимости от давления, скорости и температуры газового потока. Кроме того, исследуется действие газов на специальные образцы, помещенные в газовую струю.  [c.76]

Условия усталостного разрушения в зависимости от остаточных напряжений и свойств слоя при поверхностном упрочнении  [c.148]

Большое значение теории Гриффитса состоит в том, что ее автор показал в ней зависимость прочности на разрыв аморфных тел от некоторых физических переменных или параметров ( средней длины 2с гипотетической трещины или щели, модуля упругости Е, поверхностного натяжения Т) и объяснил условия разрушения в рассмотренных им случаях путем исследования равновесия напряжений вокруг этих гипотетических ослабленных зон малых, но конечных размеров (больших по сравнению с атомными расстояниями). Распространение ослабленных зон связано с происходящим в них обменом энергий различных видов.  [c.224]

Процесс хрупкого разрушения в зависимости от характера нагружения (статическое, циклическое) может включать три этапа возникновение трещин, медленное (стабильное) их развитие и лавинообразное (нестабильное) распространение разрушения. Отдельные конструкции допускают к эксплуатации с трещиной или трещиноподобным дефектом при условии, что рабочие нагрузки относительно малы и не приводят к страгиванию трещин, или в случае непрерывного контроля за их медленным развитием и своевременного предупреждения лавинообразного разрушения.  [c.76]

Справочные материалы к расчетам. Справочные материалы в табличной форме включают поправочные множители табличные значения удельной работы резания в зависимости от толщины срезаемого слоя а р, значения переходного множителя т от касательной силы Рх к нормальной / значения параметра шероховатости обработанной поверхности (по неровностям разрушения) в зависимости от условий резания значения табличной силы Р в зависимости от толщины срезаемого слоя.  [c.743]


Процессы, происходящие в металле сварных соединений, могут привести к хрупким разрушениям сварных конструкций. Опыт эксплуатации ответственных металлических конструкций показывает, что изготовление сварных узлов без трещин еще не устраняет опасности разрушения хрупких материалов при работе в условиях сложного напряженного состояния и низких температур. Причинами разрушений могут быть конструктивные недостатки — наличие макроскопических концентраторов напряжений, дефекты сварных соединений — раковины, поры, шлаковые включения, подрезы по краю швов, а также различного вида несовершенства кристаллического строения металлов, микротрещины и полости, роль которых как концентраторов напряжений резко возрастает в условиях эксплуатации. В зависимости от материалов, применяемых в конструкциях, окружающей среды и вида нагружения исходные дефекты могут развиваться в трещины очень медленно или, наоборот, катастрофически быстро.  [c.84]

Для учета в обобщенных оценках влияния отдельных видов разрушения в зависимости от условий эксплуатации для них установлены коэффициенты весомости (X), приведенные в табл. 1.  [c.410]

Наиболее вероятным является развитие процессов коррозионного растрескивания по следующей схеме. Вследствие локализованной электрохимической коррозии образуются небольшие узкие трещины в виде отдельных углублений. По мере развития трещины у ее вершины создается концентрация напряжений и, следовательно, местная пластическая деформация, которая может вызвать развитие процесса хрупкого разрушения. В зависимости от формы образца, способа приложения нагрузки, условий испытания и определенного энергетического состояния металла, свойственного процессу хрупкого разрушения, трещина может либо распространиться через весь образец, приведя к мгновенному его разрушению, либо, распространившись на определенное расстояние, остановиться. Интенсивность коррозии в результате засасывания в трещину коррозионной среды под действием капиллярных сил повышается. В этих условиях возможно и разветвление трещин. Процесс коррозии постепенно замедляется вследствие поляризации и образования защитной пленки,  [c.277]

Кроме феноменологических подходов к проблеме хрупкого разрушения в настоящее время интенсивно развиваются исследования по анализу предельного состояния кристаллических твердых тел на основе физических механизмов образования, роста и объединения микротрещин. Разработаны дислокационные модели зарождения и подрастания микротрещины [4, 24, 25,. 106, 199, 230, 247], накоплен значительный материал по изучению закономерностей образования и роста микротрещин в различных структурах [8, 22, 31, ИЗ, 183, 213, 359, 375, 381], подробно изучены макроскопические характеристики разрушения, в том числе зависимости истинного разрушающего напряжения от разных факторов, таких, как диаметр зерна, температура и т. д. [6, 101, 107—109, 121, 149—151, 170, 191, 199, 222, 387, 390, 410, 429]. Как отмечалось выше, при формулировке критериев разрушения наиболее целесообразным представляется подход, интерпретирующий механические макроскопические характеристики исходя из структурных процессов, контролирующих разрушение в тех или иных условиях.  [c.59]

Использование критерия хрупкого разрушения в виде (2.1) во многих случаях позволяет прогнозировать несущую способность различных конструкционных элементов в частности, результаты расчета по условию (2.1) весьма удовлетворительно соответствуют экспериментальным данным при испытании образцов с концентраторами [101] в случае реализации довольно больших пластических деформаций по достижении условия oi = = S (ef), где ef — интенсивность пластической деформации. Однако применение критерия хрупкого разрушения в виде (2.1) для прогнозирования условий разрушения образцов с острыми концентраторами или трещинами связано со значительными трудностями. В частности, моделирование температурной зависимости критического коэффициента интенсивности напряжений Ki T) на основе условия (2.1), как будет показано в подразделе 4.2, не позволяет адекватно описать экспериментальную кривую. Указанные обстоятельства приводят к необходимости дополнительного анализа условий хрупкого разрушения. Такой анализ на основе физических процессов, контролирующих хрупкое разрушение материала, представленный ниже, позволил дать новую формулировку необходимого условия хрупкого разрушения— условия зарождения микротрещин скола — и предложить физическую интерпретацию зависимости критического напряжения хрупкого разрушения S от пластической деформации [75, 81, 82, 127, 131].  [c.60]

Зависимости, определяющие условия формирования предельного состояния материала в опасных зонах детали. Одним из важных направлений исследований малоцикловой неизотермической проч-пости является изучение условий формирования предельного состояния материала в опасных объемах детали. Эту задачу следует рассматривать в комплексе исследований, проводимых, с одной стороны, с целью обоснованного выбора критерия малоцикловой прочности, а с дру1 ой, изучения закономерностей для аналитического описания процесса достижения предельного состояния по условиям разрушения в зависимости от режимов термомеханическо-  [c.62]

Один из наиболее трудных и наименее разработанных вопросов механики материалов — прогнозирование типа разрушения (внутризеренного или межзеренного) и условий перехода от внутризеренного, менее опасного разрушения, к межзерен-ному, приводящему к снижению критической деформации и долговечности материала. В настоящей главе предложен подход к анализу типа разрушения в зависимости от условий испытаний. Суть подхода заключается в параллельном анализе накоплений повреждений в теле зерна и по его границам тип разрушения будет определяться тем процессом, который дает меньшие значения параметров предельных состояний материала Nf и е/). Такой анализ может проводиться на основании физико-механических моделей кавитационного внутризеренного или усталостного разрушения, рассмотренных в гл. 2, и модели кавитационного межзеренного разрушения, представленной в данной главе.  [c.187]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]


Скорость роста усталостных трещин. Методика усталостных испытаний, с помощью которой регистрируют только число циклов до разрушения, не дает картины зарождения усталостных повреждений в металле, эозникновения и распространения усталостных трещин. Анализ результатов усталостных испытаний должен проводиться с позиции двухстадийности процесса усталостного разрушения. В зависимости от ряда частных условий распространение уже образовавшейся усталостной трещины может происходить за п иод от 10 до 90% от общей долговечности образца или детали. Скорость роста усталостных трещин является основным критерием оценки чувствительности материалов к развитию усталостного разрушения.  [c.33]

Установлено влииние состава и структуры на основные закономерности поведения при деформировании, зарождение л развитие трещин в саожиоле-гировзнных алюминиевых сплавах в условиях растягивающих напряжений при 20 С и повышенных температурах. Изучены особенности пластической деформации и разрушения в зависимости от скорости растяжения, изменяющейся Б широком интервале.  [c.166]

Введение бора уменьшает или устраняет склонность к МКК коррозионностойких сталей в отпущенном состоянии как в слабоокислительных, так и в окислительных условиях при испытаниях в растворах сернокислой меди, серной кислоты с добавками Fe + и в кипящей 65 %-ной HNOa [1.36, 1.37]. В окислительных средах бор ухудшает коррозионную стойкость закаленных сталей, особенно сталей, содержащих молибден. Уменьшение вредного влияния бора достигается закалкой от высоких температур (см. рис. 1.43). Однако полного устранения восприимчивости к МКК хромоникельмолибденовых сталей трудно достичь даже при снижении содержания бора до 0,002 %. Влияние бора на структуру и характер коррозионного разрушения в зависимости от условий коррозионных испытаний иллюстрирует рис. 1.061.  [c.62]

В указангшх условиях эксплуатации штампы для горячего деформирования разрушаются по следуюш,им причинам 1) в результате пластической деформации (смятия) или хрупкого разрушения в зависимости от величины, знака и характера действующих напряжений и температуры деформирования 2) вследствие образования сетки разгарных трещин на рабочей поверхности штампов, 3) в результате усиленного износа из-за химического взаимодействия при жидкой (полужидкой) штамповке и прессовании цветных металлов и сплавов или окисления при дэформированни менее активных конструкционных материале .  [c.718]

Необходимость расчета на сопротивление хрупкому разрушению связана с тем, что в условиях работы элементы конструкций могут находиться в хрупких или квазихрупких состояниях (17, 28, 29). Основным фактором возникновения таких состояний для сплавов на основе железа в связи с присущими им свойствами хладноломкости является температура. На схеме (рис. 6) показаны области основных типов сопротивления разрушению в зависимости от температуры. В области температур, превышающих первую критическую Ткр1 для сплавов, обладающих хладноломкостью, а также для материалов, не обладающих хладноломкостью в диапазоне температур работы конструкций (сплавы на основе магния, алюминия, титана), имеют место вязкие состояния. В этом случае предельные состояния наступают после возникновения значительных пластических деформаций и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность при таких состояниях рассмотрены в гл. 2.  [c.246]

Прочность композита находится методами механики хрупкого разрушения в зависимости от размеров и формы дефекта (и от внешних нагрузок) прй помощи условия К = K Q. Напртмер, в случае сквозной изолированной прямолинейной трещины длины 2 / в ортотропной пластине (листовой композит) имеем Ki = ay/iiT, Отсюда прочность композита равйа  [c.84]

В области вязкого разрушения масштабный эффект отсутствует, зависимость прочности от конфигурации тела определяется расчетом в рамках выбранных модели тела и условия разрушения в точке по какой-либо теории прочности. В случае идеальных упруго-пластических тел надобность в теории прочности отпадает и прочность вычисляется в рамках самой модели. В области хрупкого разрушения масштабный эффект всегда имеет место, зависимость прочности от конфигурации и размера тела (и в том числе от формы и размеров трещиноподобных дефектов) вычисляется в рамках модели упругого тела по теории Гриффита — Ирвина. В этом параграфе рассматривается в основном наиболее практически важная область переходного разрушения, в которой масштабный эффект также имеет место и которая изучена гораздо менее полно.  [c.394]

ПРОЧНОСТЬ, способность твердых тел подвергаться в определенных пределах действию внешних сил, не разрушаясь и не получая практически ощутимых остаточ- ных деформаций. П. таким образом характеризуется теми предельными условиями, к-рым соответствует или появление первых остаточных деформаций (см. Деформация пластическая) или же начало разрушения, в зависимости от того, какое из этих двух явлений наступит при данных условиях раньше. Весьма часто однако под прочностью понимают только сопротивление раз-  [c.186]

Межкристаллитная коррозия чаще всего происходит при распаде некоторых твердых растворов прн определенных условиях, К числу этих условий, в основном, относится состояние сплава в зависимости от его термической обработки и структурных особенностей. Так, например, высокохромистые стали могут подвергаться межкристаллитной коррозии после их быстрого охлаждения от температур, превышающих 900° латунь подвержена межкристаллитному разрушению в зависимости от природы и структуры сплава, а также и характера агрессивной среды свинец даже высокой чистоты имеет склонность к межкристаллитной коррозии вследствие роста зерна медноалюминиевые сплавы — вследствие выделения при искусственном старении интерметаллических соединений и др.  [c.152]

Под разрушением в механике деформируемого твердого тела понимается макроскопическое нарушение сплошности тела в результате воздействия на него внешнего окружения. Разрушение обычно развивается параллельно с упругой или пластической деформацией твердого тела, или в условиях ползучести. Различают две формы разрушения скрытое разрушение — зарождение и развитие микродефектов, рассеянных но объему тела, и полное разрушение — разделение тела на части. Кроме того, различают несколько видов разрушения в зависимости от того, какие из свойств тела играют онределяюгцую роль в наблюдаемом процессе разрушения хрупкое (без заметных пластических деформаций), пластическое (вязкое), усталостное и длительное.  [c.20]

При испытаниях на замедленное разрушение нагружение малогабаритного образца 3 можно осуществить механическим путем (рис.6.5.1,6) при помощи винта 1 через опорый диск 2. Выпуклая поверхность образца 3, ограниченная диаметром опорного диска, налодится в условиях двухосного осесимметричного напряженцого состояния с растягивающими компонентами напряжения [289]. Дисковый образец может иметь диаметральный прямой или круговой шов. Заданный уровень напряжения на поверхности обеспечивают либо расчетным определением требуемого изгиба, либо тензометрированием. Результаты таких испьгганий позволяют судить о стойкости свиных соединений против замедленных разрушений в зависимости от материала, технологии сварки, уровня остаточных напряжений, присутствия коррозионной среды.  [c.155]


Смотреть страницы где упоминается термин Условия разрушения в зависимости : [c.358]    [c.487]    [c.13]    [c.65]    [c.240]    [c.173]    [c.103]    [c.191]    [c.503]    [c.106]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.0 ]



ПОИСК



Зависимость параметров разрушения термопластов от условий во внешнем потоке

Разрушение Условие

Условия разрушения в зависимости остаточных напряжений

Условия разрушения в зависимости температур



© 2025 Mash-xxl.info Реклама на сайте