Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория балок решения для пластин

В-четвертых, когда точное решение задачи теории упругости не может быть найдено, вариационный метод зачастую обеспечивает формулировку для приближенного решения задачи, которая дает приближенное решение с заданной степенью точности. Здесь вариационный метод обеспечивает не только приближенное решение определяющих уравнений, но и условия приближенного выполнения граничных условий. Поскольку точное решение задачи теории упругости возможно лишь в очень редких случаях, то для практических целей следует удовлетвориться приближенными решениями. Теории балок, пластин, оболочек и многокомпонентных конструкций являются типичными примерами приближенных формулировок, демонстрирующими мощь принципа виртуальной работы и связанных с ним вариационных методов.  [c.20]


Метод Кирхгофа имеет преимущество перед методом Коши— Пуассона благодаря большей наглядности и физической ясности в основу теории положены упрощения, имеющие вполне определенный физический смысл и очевидную преемственность от хорошо проверенной опытами теории балок. Введение понятий о внутренних усилиях и моментах еще более сблизило теорию пластин с теорией балок и привело к окончательному выяснению вопроса о граничных условиях для пластин, который, как было уже сказано, долгое время оставался предметом дискуссии. В то же время нельзя не отметить существенный недостаток этого метода, а именно — его ограниченность теория Кирхгофа является приближенной и не может быть развита в точную теорию. В этом отношении теория Коши—Пуассона была бы предпочтительней, если бы удалось, наконец, выяснить условия сходимости ее рядов, поскольку она позволяет, в принципе, неограниченно уточнять решение.  [c.7]

Замечание. Мы привели в разд. 3.1—3.3 ряд характерных постановок задач теории упругости и теперь перейдем к анализу некоторых их свойств на основе общих представлений решений уравнений теории упругости. Однако прежде отметим, что многие специфические постановки краевых задач теории упругости возникают в тех случаях, когда имеет место тот или иной вид вырождения системы дифференциальных уравнений теории упругости из-за наличия среди геометрических характеристик упругого тела одного или двух малых параметров (модели стержней, балок, пластин, оболочек) [90, 93]. Ситуация здесь вполне аналогична той, что имеет место в общей теории дифференциальных уравнений в частных производных. Некоторые методы и результаты построения оценок решений для таких вырожденных задач обсуждаются в гл. 10.  [c.85]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]


Оценка краевых эффектов для пластин и оболочек на основе соответствующих решений для балок. Поля локальных напряжений, подобные описываемым выражениями (3.39) и (3.40) и только что рассмотренному случаю, используются для уточнения концевйх условий для балок путем наложения этих полей на решения, которые удовлетворяют только интегральным краевым условиям, и по крайней мере приближенно у овлетворяют действительным краевым условиям. в каждой точке на концах. В -тео )ии пластин и оболочек имеют место те же проблемы, состоящие в том, что получаемые решения удовлетворяют только интегральным краевым условиям и указанное выше распределение напряжений, соответствующее задаче теории упругости для плоского деформированного состояния и аналогичное описанным выше уточнениям по теории плоского напряженного состояния для концов балки, может быть наложено на такие же решения для пластин и оболочек, записанные для отдельных участков краев, так, чтобы десйтвитрльно удовлетворить краевым условиям в каждой точке.  [c.188]

Граничные условия Кирхгофа ). Методы рассмотрения связанных с прогибом If граничных условий при изгибе, которые были изложены в 2.7 применительно к балкам, могут быть, как правило, без дополнительного большого изменения или затруднения примеиены к задачам пластин или оболочек. Однако дополнительно к сказанному в 4.1 имеется еще одна сторона, поскольку изложенные там теории пластин и оболочек, основанные на гипотезе Кирхгофа, значительно отличаются от случая поперечно нагруженных балок. Как видно из рис. 4.1, на каждой стороне малого элемента -имеется трц силовых фактора обусловленные лзгибом силы и моменты, например F , Мя а Мщ, на стороне, нормальной к оси х, в то время как для поперечно нагруженной балки имеется только два силовых фактора F и Ж. Но и уравнение (2.4) для балок и соответствующее уравнение (4.18) для пластин имеют четвертый порядок, й полное решение для них содержит только необходимое ч сло постоянных интегрирования для балок и произвольных функций (заданных по всей длине 1 рая пластины) интегрирований для пластин, что позволяет удовлетворить дйум условия а каждом конце или крае.  [c.242]

Известен ряд точных в явном виде решений трехмерной задачи теории упрзггости, которые описывают интересные для практики задачи о пластина , за исключением деталей, относящихся к граничным условиям они, согласно принципу Сен-Ве-нана, обычно имеют существенное Значение только вблизи краев, где, как это обсуждается ниже, могут быть применеды уточняющие поправки. Так же, как и в случае балок, большая часть, если не все, этих решений, так же как несколько обобщенных точных решений в явном виде для случая отсутствия на- грузок на поверхностях пластины (они могут использоваться как при удовлетворении краевых условий, так и для других важных целей), представляют собой решения в рядах по функциям нагружений на верхней и нижней поверхностйх, которые аналогичны решениям (3.28) и (3.29) для балок. Эти решения в рядах сходятся it точным решениям для произвольного типа гладких функций нагружения и обеспечивают, вообще говоря, наиболее важные уточнения результатов, получаемых по классической теории пластин при самых общих условиях нагружения. Поэтому логично начать изучение толстых пластин именно с таких решений в рядах.  [c.304]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]


Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]

Различие между этими разделами механики состоит, во-первых, в рассматриваемых объектах (так, например, в курсе сопротивления материалов рассматривается главным образом брус, в теории упругости помимо бруса изучаются нанряжеиное и деформированное состояния пластин, оболочек, массива, а в строительной механике объектами изучения являются системы, состоящие из стержней (фермы), балок (рамы), пластин и оболочек) во-вторых, в принимаемых допущениях (теории упругости, пластичности и ползучести отличаются друг от друга тем, что в них принимаются различные физические законы, устанавливающие связь между напряжениями и деформациями, но не вводится каких-либо деформационных гипотез, а в сопротивлении материалов физический закон тот же, что и в теории упругости (закон Гука), но, кроме того, принимается дополнительно ряд допущений — гипотеза плоских сечений, ненадавлпвания волокон и т. д.) в-третьих, в методах, используемых для решения задач (в теории упругости приходится решать существенно более слопшые уравнения, чем в сопротивлении материалов, и для их решения приходится прибегать к более сложным математическим методам).  [c.7]

Ниже изложен метод построения такого решения аналогичный известному методу А. Н. Крылова в теории изгиба балок на упругом основании. Суть этого метода такова. Участки пластины (с постоянной нагрузкой) нумеру10тся от центра к периферии. На каждом участке выражение для частного решения принимается равным сумме соответствующего выражения на предыдущем участке и частного решения, отражающего влияние дополнительных нагрузок, действующих на данный участок. Это дополнительное решение строится таким образом, чтобы в начале участка оно обращалось в нуль вместе со своей первой производной. Тогда присутствие этого решения не изменяет значений й и на внутренней границе участка, и постоянные и С2 оказываются для данного участка такими же, как для предыдущего.  [c.23]

Различие же между ними состоит в рассматриваемых объектах, принимаемых допущениях и в методах решения задач. В курсе сопротивления материалов рассматриваются главным образом брусья в теории упругости —брусья, пластины, оболочки и массивы в строительной механике — системы, состоящие из стержней (фермы), балок (рамы), пластин и оболочек. В теориях упругости, пластичности и вязкоупругости используются различные физические законы, устанавливающие связь между напряжениями и деформациями, по каких-либо деформационных гипотез не вводится. В результате приходится решать существенно более сложные задачи, чем в сопротивлении материалов, и для их решепия прибегать к более сложным математическим методам.  [c.9]

Результаты показывают, что использование формулировок на базе линейных смещений на границе (межэлементно совместимых) приводит к довольно медленной сходимости к эталонному решению То же самое справедливо и для треугольных элементов (см. рис. 9.11). Напротив, использование формулировок с несовместимыми модами приводит к очень точным решениям в этой задаче Результаты для наименьшего числа степеней свободы 60 степеней свободы) получены при измельчении сетки лишь в направлении оси х, т. е. при одном элементе по толщине балки. Поэтому формулировки для плоско-напряженных задач общего вида можно использовать в представлении частных случаев изгиба, где обычно требуется выполнение гипотезы плоских сечений (плоские сечения до деформации остаются плоскими после нее). Для задач изгиба балок не часто требуется строить элементы, отличающиеся от простейшего изгиб-ного элемента, однако в гл. 10 будет показано, что концепция несовместимых мод, являющаяся альтернативной в смысле интегрирования энергии деформации элемента на грубых сетках, весьма полезна при использовании трехмерных элементов теории упругости для анализа пластин и оболочек.  [c.300]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]



Смотреть страницы где упоминается термин Теория балок решения для пластин : [c.332]    [c.208]    [c.556]    [c.26]    [c.393]   
Балки, пластины и оболочки (1982) -- [ c.345 ]



ПОИСК



Балка решения

Теория пластин



© 2025 Mash-xxl.info Реклама на сайте